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Aircraft collision avoidance is a pervasive need in this modern 

age of flight. We present a 2-D automated collision avoidance flight 

controller for automated collision avoidance amongst 2 aircraft.  

This controller is designed to satisfy safety and liveness 

requirements, implemented using Simulink and Stateflow, and 

verified using safety and liveness monitors.  
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I. INTRODUCTION 

Aircraft collision avoidance algorithms are important to the 
safe flight in this modern age. If multiple aircraft are in the air 
at the same time, catastrophic problems can occur if one 
aircraft were to run into another. To avoid this aircraft 
controllers must be able to automatically sense and avoid 
nearby aircraft by altering their trajectory before such an issue 
can occur. The focus of this paper will be on the development 
and analysis of a 2-D flight controller with built-in automated 
collision avoidance.  

II. BASIC CONCEPTS 

A. 2-D Flight Concepts 

 For the purposes of automated collision avoidance flight 
may be simplified to three primary concepts; orientation, 
direction, and motion. The orientation of an aircraft in 3-D 
space is usually described with the terms roll, pitch, and yaw 
shown in Figure 1. These refer to the angular rotations about 
the x, y, and z axes. However, for the 2-D case we can drop 
roll and pitch, leaving only yaw about the y axis as illustrated 
in Figure 2. This restricts orientation to a single degree of 
freedom about the z axis and restricts the aircraft position to 
the x-y plane as illustrated in Figure 3. 

 

Figure 1: Orientation of Aircraft 3-D 

 

Figure 2: Orientation of Aircraft in 2-D 

 

 

Figure 3: x-y plane 

 

 



 The orientation state-space may be reduced further by 
restricting the direction of flight to only along the x and y axes, 
restricting orientation angles to 0, 90, 180, and 270 degrees as 
illustrated in Figure 4.  

 

 

Figure 4: Restricted X and Y Axes Direction and Orientation 

 

 To simplify the motion of an aircraft a constant velocity 
may be assumed.   

B. Simulink 

Simulink is a model-based design and simulation tool that 
provides a graphical framework for developing and simulating 
control software. The tool allows for the model-based creations 
of signal flow diagrams in which results can be displayed to a 
graph.  The tool allows simulation time steps to be fixed-step. 
[1] The following are list of Simulink Components used for 
software associated with this paper. 

• Constant 

• Scope 

• Subsystem 

• Delay 

C. Stateflow 

Stateflow is a Simulink integrated tool that allows the 
creation of state-machines diagrams. The diagrams can 
interface with the signal flows at each timestep in a simulation. 
Stateflow supports extended-state machine notation. [2] The 
following are list of Stateflow Components used for software 
associated with this paper. 

• Chart 

• Transition 

• Junction 

 

D. Synchronous Model 

Synchronous components receive inputs and produce 
outputs (execute) based on a sequence of rounds. [3] The fixed-
time step simulation capability of Simulink allows the 
synchronous model to be utilized when designing components. 

E. Continuous-Time Model 

Physical components receive inputs and produce outputs 
based on a continuous-time model. The continuous-time model 
is like the synchronous model in that components execute in a 
sequence of rounds; however, it differs in that the time steps 
are infinitely small because time is continuous. [3] Therefore, 
continuous-time components react by approximating the 
solution to a differential equation. 

F. Hybrid Systems 

Hybrid Systems involved the integration of multiple 
reactive component models. [3] For this Aircraft Collision 
Avoidance Controller simulation the two integrated component 
models are the Synchronous and continuous-time models.  

G. Saftey 

Safety requirements are a formal method of describing the 
correctness of the system. Safety requirements are written as 
Boolean-valued statements (known as invariants) that must not 
be violated by any reachable state. The intuition of safety 
requirements is to ensure that nothing bad every happens (i.e. 
two aircraft run into each other). [3] 

H. Liveness 

Liveness requirements are a formal method of describing 
the behavior of the system over time. Safety requirements are 
written using Linear Temporal Logic (LTL). The intuition of 
liveness requirements is to ensure that something good 
eventually happens. [3] 

III. PROBLEM 

A. Requirements 

An indexed list of a natural language requirements for this 
2-D controller design (provided by the class assignment []) are 
provided below. 

1. The aircraft can fly in a 2-D plane. Its source and 
destination are integer-valued points in. [4] 

2. The aircraft flies with a constant velocity v = 1 km/minute 
along either X-axis or Y-axis. [4] 

3. The aircraft controller can update direction of flight every k 
= 1 minutes. Note that, it can decide to either fly straight 
or rotate left or right by 90 degrees but not turn back. [4] 

4. At the beginning of every k = 1 minutes,  

1. The controller can exchange messages with any 
aircraft in a square region with side length 2q = 6 
km (communication zone) in the vicinity of the 
aircraft as shown in figure below. [4] Refer to 
Figure 5 for a communication zone and danger 
zone diagram. (Note: This has been adjusted from 
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the referenced requirements from 4 km to 6 km to 
avoid a failing edge case. See VIII, B for 
details.) 

2. Based on the messages received and the current 
state of the aircraft, the controller can update the 
direction of flight. [4] 

5. Collision Avoidance: Each aircraft has a square region with 
side length 2d = 1 km (danger zone) around it such that no 
aircraft should enter this region at any time during the 
flight as shown in figure below. Refer to Figure 5 for a 
communication zone and danger zone diagram. [4] 

6. The source locations are distinct locations for different 
aircraft. [4] 

7. Once an aircraft reaches its destination, it is no longer a 
threat and collision avoidance is not required for this 
aircraft. Also, the aircraft stops sending messages to the 
other aircraft in its vicinity. [4]  

 

Figure 5 Communication Zone and Danger Zone [4] 

8. Further, we assume that the airspace consists only of two 
aircraft that start at time t = 0. The goal here is to design a 
controller (same algorithm for both aircraft) that ensures 
that each aircraft reaches its destination in as small time as 
possible while ensuring collision avoidance. In the 
problem, the sources and destinations for aircraft are 
provided as parameters and the designed controller should 
work with all such source-destination pairs. [4] 

B. Formalized Saftey Requirements 

The primary safety requirement of this flight controller this 
that no aircraft should ever enter 1000 m danger zone of 
another aircraft. This invariant can be formally written:  

• ( (X_State_Aircraft – Danger_Zone <= X_Incoming_Aircraft) Λ 
(X_Incoming_Aircraft <= X_State_Aircraft + Danger_Zone) ) ¬ = True 

• ( (Y_State_Aircraft – Danger_Zone <= Y_Incoming_Aircraft) Λ 
(Y_Incoming_Aircraft <= Y_State_Aircraft + Danger_Zone) ) ¬ = True 

C. Formalized Liveness Requirements 

The primary liveness requirement of this flight controller 

is that each aircraft must eventually (◊) reach their destination. 

This liveness requirement may be formally written as: 

 
• ◊(X_State_Aircraft = Aircraft_X_Dest Λ Y_State_Aircraft = 

Aircraft_Y_Dest) 

IV. AIRCRAFT COLLISION AVOIDENCE SOLUTION  

 To satisfy the requirements above we utilize Simulink and 
Stateflow to build up two aircraft subsystems and a 
communications environment subsystem inside of the 
Synchronous (fixed-step) Simulink model. The aircraft 
subsystems are duplicates of each other. Inside of each aircraft 
subsystem is a Stateflow chart containing the aircraft collision 
avoidance controller logic. The controller logic ensures that the 
aircraft meets the requirements above while traveling from and 
initial state to a final state. This includes formalized safety and 
liveness requirements. Inside of the communications subsystem 
are two identical Stateflow charts that contain the 
communication environment logic. The communication 
environment logic simulates the physical message environment 
by marking whether a message is within the communication 
zone of the aircraft at a given step in the simulation. 

V. INPUT, OUTPUT, STATE COMPONENT SPECIFICATION 

DETAILS 

A. Aircraft Subsystem Specification 

The designed specification for the aircraft subsystem is 
bulleted below.  

• Inputs 
o Constant Integer {0, 90, 180, 270} Initial Orientation (degrees) 

of Aircraft  
o Constant Integer Initial X Coordinate (m) Aircraft 
o Constant Integer Initial Y Coordinate (m) Aircraft 
o Constant Integer X Destination Coordinate (m) Aircraft 
o Constant Integer Y Destination Coordinate (m) Aircraft 
o Integer X Message In (m) 
o Integer Y Message In (m) 
o Integer {0, 90, 180, 270} Orientation Message In 
o Integer {0 1} Message Received In 
o Integer Rounds to Avoid Upon Communication 
o Constant Integer Danger Zone In (m) = 500 (m) 
o Constant Integer Turn Time In = 1000 (m) 

• Outputs 
o Integer X Out (m) 
o Integer Y Out (m) 
o Integer {0, 90, 180, 270} Orientation Out (m) 
o Integer {0 1} Danger Zone Breached out 
o Integer X Message Out 
o Integer Y Message Out 
o Integer {0, 90, 180, 270} Orientation Message Out 

 

B. Aircraft Collision Avoidence Controller Specification 

The designed specification for the aircraft collision 
avoidance controller is bulleted below. 

• Inputs 
o Constant Integer {0, 90, 180, 270} Initial Orientation (degrees) 

of Aircraft  
o Constant Integer Initial X Coordinate (m) Aircraft 
o Constant Integer Initial Y Coordinate (m) Aircraft 
o Constant Integer X Destination Coordinate (m) Aircraft 
o Constant Integer Y Destination Coordinate (m) Aircraft 
o Integer X Message In (m) 
o Integer Y Message In (m) 
o Integer {0, 90, 180, 270} Orientation Message In 
o Integer {0 1} Message Received In 
o Integer Rounds to Avoid Upon Communication 
o Constant Integer Danger Zone In (m) = 500 (m) 
o Constant Integer Turn Time In = 1000 (m) 

• Outputs 
o Integer X Out (m) 
o Integer Y Out (m) 
o Integer {0, 90, 180, 270} Orientation Out (m) 
o Integer {0 1} Danger Zone Breached out 

• States 



o Integer Y_State 
o Integer X_State 
o Integer {0, 90, 180, 270} Orientation_State 
o Integer Rounds_State 
o Integer Turning State 

C. Communication Environement Subsystem Specification 

The designed specification for the communication 
environment subsystem is bulleted below. 

• Inputs 
o Constant Integer Comm Zone In = 3000 m 
o Integer X In Aircraft 1 
o Integer Y In Aircraft 1 
o Integer X Message In Aircraft 2 
o Integer Y Message In Aircraft 2 
o Integer {0, 90, 180, 270} Orientation Message In Aircraft 2 
o Integer X In Aircraft 2 
o Integer Y In Aircraft 2 
o Integer X Message In Aircraft 1 
o Integer Y Message In Aircraft 1 
o Integer {0, 90, 180, 270} Orientation Message In Aircraft 1 

• Outputs 
o Integer X Message Out From Aircraft 2 
o Integer Y Message Out From Aircraft 2 
o Integer {0, 90, 180, 270} Orientation Out From Aircraft 2 
o Integer {0 1} Send Message Out From Aircraft 2 
o Integer X Message Out From Aircraft 1 
o Integer Y Message Out From Aircraft 1 
o Integer {0, 90, 180, 270} Orientation Out From Aircraft 1 
o Integer {0 1} Send Message Out From Aircraft 1 

D. Communication Environement Specification 

The designed specification for the communication 
environment is bulleted below. 

• Inputs 
o Constant Integer Comm Zone In = 3000 m 
o Integer X In Aircraft 
o Integer Y In Aircraft 
o Integer X Message In Aircraft 
o Integer Y Message In Aircraft 
o Integer {0, 90, 180, 270} Orientation Message In Aircraft 

• Outputs 
o Integer X Message Out From Aircraft 
o Integer Y Message Out From Aircraft 
o Integer {0, 90, 180, 270} Orientation Out From Aircraft 
o Integer {0 1} Send Message Out From Aircraft 

VI. HYBRID SYSTEM MODEL DETAILS 

A. Synchronous Simulation Model 

The simulation model follows a synchronous (fixed-step) 
model in which each simulation time step is equivalent to 
1/1000th of a minute of physical system time. 

B. Synchronous Controller Model 

The reactive controller algorithm runs as a synchronous 
model where each time step is equivalent to 1 simulation time 
step. The aircraft travels at a constant velocity of 1 km/min, 
and therefore moves 1 m per 1 simulation time step. Therefore, 
the controller may update its internal states every 1 simulation 
time step, or equivalently 1 m travelled.  

C. Synchronous Enviroment Model 

The communications environment model follows a 
synchronous model in which the time step is equivalent to the 
simulation time-step. A real communications environment 
follows a complex continuous-time model, however it is 
modeled as a synchronous model here for simplicity, since it 
does not affect the results of the aircraft controllers. 

D. Continous-Time Physical Model 

The velocity of the aircraft follows a continuous-time 
model. However, because the velocity (dx/dt) is a constant 1 
km/min (i.e. 1/1000 m/s), and the synchronous controller runs 
off of a 1/1000th of a second timestep, the controller can 
calculate the position of the aircraft at any given point and 
likewise adjust it by incrementing or decrement its x or y 
position according to its current orientation. 

VII. ALORITHMS DETAILS 

A.  AircraftCollisionAvoidanceController (Top-Level) 

The AircraftCollisionAvoidanceController is built using 
hierarchical extended-state machines. At the top-level, there 
are two modes; a Controller mode containing the flight control 
and collision avoidance logic, and a Final mode in which the 
either the destination has been reached or the danger zone 
around the aircraft has been breached. Refer to Figure 6 for the 
AircraftCollisionAvoidanceController Top-Level structure 
Stateflow implementation.  

 

Figure 6: AircraftCollisionAvoidanceController (Top-Level) 

B. Flight Control Alorithm 

The flight control algorithm logic is contained inside of the 
top-level Controller mode. One level down (second level) in 
the Controller mode, we initialize the controller in the Initialize 
mode. Refer to Figure 7 for the Stateflow implementation. 

 

Figure 7: Initalize Mode For Flight Controller 

After initialization, the state transitions to one of the 4 
surrounding second level CollisionAvoidanceMonitor modes 
depending on the initial flight orientation of the aircraft (0, 90, 
180, 270 degrees). Refer to Figure 8 for the Stateflow 
implementation CollisionAvoidanceMonitor for the 0 degree 
orientation. 



 

Figure 8: CollisionAvoidanceMonitor Mode 

Inside the a CollisionAvoidanceMonitor mode the state 
switches to a Traveling mode (3 level down in the Controller 
mode) in which the mode increments or decrements the 
position of the plane 1 meter along either the x axis or y axis, 
respective to the orientation, every 1/1000th of a minute (or 
simulation step). Refer to Figure 9 for at the Stateflow 
implementation of the Traveling mode. 

 

Figure 9: Traveling Mode 

While inside of a CollisionAvoidanceMonitor and traveling 
along an axis there are 3 possible transitions out of the 
CollisionAvoidanceMonitor that may occur due to the aircraft x 
and y state position relative to the x and y destination positon. 
The possible transitions for the CollisionAvoidanceMonitor0 
for the 0 degree orientation are bulleted below.  

1. If [(X_In<=X_State) && (Y_In=>Y_State)], 
then transition to CollisionAvoidanceMonitor90 

2. If [(X_In<=X_State) && (Y_In<Y_State)], then 
transition to CollisionAvoidanceMonitor270 

3. If [(Y_In==Y_State) && (X_In==X_State)], 
then transition to Final 

Since the turn requires 1000 meters to complete, the turn 
modes wait 1000 meters to complete to transition to the next 
modes and adjust their orientations. Similar logic applies the 
other CollisionAvoidanceMonitor modes. This enables the 
aircraft to always traverse to the final destination in shortest 
path possible, given the orientation constraints. 

C. Collision Avoidence Control Alorithm 

 The collision avoidance algorithm is contained in and 
tailored to the 4 CollisionAvoidanceMonitor modes. To 
describe the logic we exam the CollisionAvoidanceMonitor0 
mode from Figure 8. Inside of this mode we have 7 modes. The 
initial mode is Traveling0, which maintains a transition into 
itself allowing causing it to increment the x position state of the 
aircraft 1 meter every simulation time step.  

However, if a message from the second aircraft is received 
and its orientation is facing the current aircraft in the x or y 
direction, then a transition fires to a turning mode. There are 
two turning modes; a Turn90 mode, which turns the aircraft to 
a 90 degree orientation, and a Turn270, which turns the aircraft 
to a 270 degree orientation. Since the turn requires 1000 meters 
to complete, the turn modes wait 1000 meters to complete to 
transition to the next modes and adjust their orientations. Refer 
to Figure 10 for the Stateflow implementation of the collision 
avoidance turn transitions. 

 

Figure 10: Collision Avoidence Turn Transitions 

After the turn modes have waited 1000 meters, the state 
transitions to the AvoidCollisionTraveling90 and 
AvoidCollisionTraveling270 modes, respectively. In these 
modes, the aircraft increments or decrements the y position, 
respectively, for as long as the message is still received, and 
the position and orientation still pose a threat to the danger 
zone. (Note: The implementation allows for an optional 
parameter to be set that to specifies the minimum number of 
rounds that the aircraft must remain in an avoidance mode 
before it can test if a message is still received and exit. When 
this parameter is set to zero you know you have the aircraft 
will avoid to the minimum distance needed to leave the 
communication zone of the other aircraft, or until the position 
and orientation of the other aircraft no longer poses a threat to 
the danger zone.) Refer to Figure 11 for the Stateflow 
implementation of the collision avoidance modes. 



 

Figure 11: Collision Avoidence Modes 

Once the message is no longer received, or the position no 
longer poses a threat to the danger zone, the controller initiates 
a turn back to the 0 orientation. After the 1000 meter turn is 
complete, the state transitions back to the 0 orientation and 
returns to incrementing the x direction position. Refer to Figure 
12 for the Stateflow implementation of the return to Traveling 
mode logic. 

 

Figure 12: Return To Traveling Mode Logic 

A similar collision avoidance algorithm has been written 
for the other 3 CollisionAvoidanceMonitor modes. 

D. Communication Enviroment Modeling 

The communication environment for each aircraft is 
combinational component and is modeled using an extended-
state machine with one mode and 3 cyclic transitions. Each 
round the environment outputs the x position message and y 
position message of the other aircraft and a flag that says 
whether or not the message is within the 3000 meter range of 
the aircraft so that it may be received it. If the other aircraft is 
within the 3000 meter range, then the aircraft controller will 
receive the message. If the other aircraft is outside of the 3000 
meter range, then the aircraft controller will not receive the 
message. Refer to Figure 13 for the Stateflow implementation 
of the communications environment for an aircraft. 

 

Figure 13: Aircraft Communications Environment 

E. Saftey Monitor Error State 

A transition from the Top-level Controller mode to the 
ErrorDangerZoneBreached mode in the To-Level Final mode 
is used to monitor our primary safety requirements regarding 
the danger zone. If at any point before DestinationReached 
mode in the Final mode is reached, a x position and y position 
message is received from the other aircraft that it has is within 
the danger zone, the transition fires and switches the state to 
the ErrorDangerZoneBreached mode. Therefore, there are 
only two outcomes for which the Final mode may be reached; 
either the aircraft has arrived at its destination, or the aircraft’s 
danger zone was breached, and the automatic collision 
avoidance controller failed. Equivalently, either our safety 
requirement is satisfied, or it is not satisfied. 

VIII. VERIFICATION & VALIDATION DETAILS 

A. Verification & Validation Results 

To verify the successful implementation of our aircraft 
controller algorithm we look at 4 Simulink scopes; two for 
each aircraft. One will display the current x, y, and orientation 
information of the aircraft, and one will display the results of 
DangerZoneBreached flag. We set up a worst-case scenario, in 
which the two aircraft are heading directly towards each other 
on the same axis, to test our collision avoidance controllers. 
The specifications of this test are indexed below. 

1. Aircraft 1: 
a. {0, 90, 180, 270} Initial Orientation (degrees) of Aircraft 1 = 0 
b. Initial X Coordinate (m) Aircraft 1 = 0 
c. Initial Y Coordinate (m) Aircraft 1 = 0 
d. X Destination Coordinate (m) Aircraft 1 = 4000 
e. Y Destination Coordinate (m) Aircraft 1 = 0 

2. Aircraft 2: 
a. {0, 90, 180, 270} Initial Orientation (degrees) of Aircraft 1 = 180 
b. Initial X Coordinate (m) Aircraft 1 = 4000 
c. Initial Y Coordinate (m) Aircraft 1 = 0 
d. X Destination Coordinate (m) Aircraft 1 = 0 
e. Y Destination Coordinate (m) Aircraft 1 = 0 

3. Simulation Parameters: 
a. Turn Time = 1000 
b. Comm Zone = 3000  
c. Rounds To Avoid Upon Communication (m) = 0 
d. Danger Zone (m) = 500 
e. Simulink: Fixed-Step Discrete (Auto) 
f. Simulink Simulation Start Time: 0 
g. Simulink Simulation End Time: 10000 

 

 There are 4 primary requirements we need to reason about 
per aircraft; two safety requirements (as specified above), and 
one liveness requirement (as specified above). To verify that 
our safety requirements we monitor the Danger Zone Monitor 
scope to ensure that it always take on the value 0 (false), and 
never takes on the value 1 (true). To verify that our liveness 



requirements we monitor the X, Y, Orientation scope to ensure 
that the final destination is eventually reached. The X, Y, 
Orientation scope shows the path taken by the aircraft to avoid 
the collision.  

 Refer to Figure 14 for the Danger Zone Monitor scope 
simulation results. The simulation results of the safety monitors 
reveal no breaches of the danger zone and prove that our safety 
requirements are satisfied in the context of this simulation. 

 

Figure 14: X, Y, Danger Zone Monitor Scope Simulation 
Results (Aircraft 1 is on the left, Aircraft 2 is on the right) 

 Refer to Figure 15 for the Simulink X, Y, Orientation scope 
simulation results. As shown, Aircraft 1 begins by moving 
along the x positive direction (orientation of 0), and Aircraft 2 
begins by move along the negative x direction (orientation of 
180). When one aircraft come within communication range of 
each other (approx. at x = 500 meters for Aircraft 1, and x = 
3500 meters for Aircraft 2), they initiate a turn (which takes 
1000 meters to become effective). When the turn becomes 
effective (approx. at x = 1500 m for Aircraft 1, and x = 2500 
meters for Aircraft 2) Aircraft 1 switches it’s orientation to 90 
and travels along the y axis in the positive direction until 
Aircraft 2’s orientation is no longer heading towards Aircraft 1. 
Likewise, Aircraft 2 switches it’s orientation to 270 and travels 
along the y axis in the negative direction until Aircraft 1’s 
orientation is no longer heading towards Aircraft 2. Because 
they are traveling opposite of each other immediately, they 
both detect that the orientation of the other aircraft is no longer 
poses an issue and they immediately initiate a turn back to their 
original orientation (which takes 1000 meters to become 
effective). Therefore, they are approximately 2000 meters 
away from each other when the turn is finished. Because the 
communication range is 3000 meters and they are only 2000 
meters away at this point, they both immediately initiate a 
collision avoiding again in the same manner because their 
orientations are facing each other again. After the process 
repeats a second time they are a total of 4000 meters away 
from each other, outside of the communication range, and there 
for, continue to their x destinations directly. When they are 
1000 meters away from their x destinations they initiate a turn 
(which takes 1000 meters to become effective) so that they 
arrive at their x destination and turn at the appropriate point. 
Aircraft 1 turns to an orientation of 270 degrees and 
decrements back the y destination of 0 meters, and Aircraft 2 
turns to an orientation of 90 degrees and increments back the y 
destination of 0 meters. Since the destinations of both aircraft 
are eventually reached, the liveness requirements are satisfied. 

 

Figure 15: X, Y, Orientation Scope Simulation Results (Yellow 
= X Position, Blue = Y Position, Orange = Orientation) 

(Aircraft 1 is on the left, Aircraft 2 is on the right) 

  

B. Force a Failure for Illustration Purposes 

To illustrate what a failure would look like in this aircraft 
collision avoidance controller we must adjust our required 
communication zone of 3000 meters down 2000 meters and 
force a failure. We set this simulation to illustrate what a 
failure due to this requirement change would look like. This 
simulation will be equivalent to our verification simulation 
above, only the communication zone has decreased. The 
specifications of this test are indexed below. 

1. Aircraft 1: 
a. {0, 90, 180, 270} Initial Orientation (degrees) of Aircraft 1 = 0 
b. Initial X Coordinate (m) Aircraft 1 = 0 
c. Initial Y Coordinate (m) Aircraft 1 = 0 
d. X Destination Coordinate (m) Aircraft 1 = 4000 
e. Y Destination Coordinate (m) Aircraft 1 = 0 

2. Aircraft 2: 
a. {0, 90, 180, 270} Initial Orientation (degrees) of Aircraft 1 = 180 
b. Initial X Coordinate (m) Aircraft 1 = 4000 
c. Initial Y Coordinate (m) Aircraft 1 = 0 
d. X Destination Coordinate (m) Aircraft 1 = 0 
e. Y Destination Coordinate (m) Aircraft 1 = 0 

3. Simulation Parameters: 
a. Turn Time = 1000 
b. Comm Zone = 2000 (Adjusted) 
c. Rounds To Avoid Upon Communication (m) = 0 
d. Danger Zone (m) = 500 
e. Simulink: Fixed-Step Discrete (Auto) 
f. Simulink Simulation Start Time: 0 
g. Simulink Simulation End Time: 10000 

 

Refer to Figure 16 for the Danger Zone Monitor scope 
simulation results. As illustrated our safety requirements are 
not satisfied in this forced failure case as the danger zone 
monitors show that both aircraft had their danger zones 
breached approximately 1800 steps into the simulation. 



 

Figure 16: X, Y, Danger Zone Monitor Scope Simulation 
Results (Aircraft 1 is on the left, Aircraft 2 is on the right) 

Refer to Figure 17 for the Simulink X, Y, Orientation scope 
simulation results. To illustrated why our safety requirements 
were violated we can look at X, Y, Orientation scope 
simulation results. As shown both aircraft head directly into 
each other and violate their danger zone safety requirements. 
This happens because the aircraft are heading towards one 
another and their velocities are compounded. Because the 
communication zone (in this forced failure case) is 2000 
meters, and it takes 1000 meters to turn from the first 
notification of an oncoming aircraft, neither of them would be 
able to turn until they are directly on top of one another, since 
their relative velocities are compounded. Therefore, though 
both aircraft initiate turns, they are not able to complete the 
turns before violating their danger zone safety requirements. 
As illustrated when Aircraft 1 passes approximately 1750 
meters on the x axis and Aircraft 2 drops below approximately 
2250 meters on the x axis (i.e. below a 500 meter distance from 
each other), one of our danger zone safety requirements is 
breached.  

 

Figure 17: X, Y, Orientation Scope Simulation Results (Yellow 
= X Position, Blue = Y Position, Orange = Orientation) 

(Aircraft 1 is on the left, Aircraft 2 is on the right) 

IX. CONCLUSION 

We have illustrated the design, implementation, and 
verification of a 2-D automated collision avoidance controller. 
We converted the requirements into formal safety and liveness 
requirements and designed component specifications. The 
controller was implemented into a Simulink and Stateflow 
simulation environment, and verified using safety and liveness 
requirement monitors. 
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