
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Aircraft Automated Collision Avoidance

Ronald Picard

CS 6376 Hybrid and Embedded Systems

Vanderbilt University

Nashville, TN, USA

ronald.s.picard@vanderbilt.edu

Aircraft collision avoidance is a pervasive need in this modern

age of flight. We present a 2-D automated collision avoidance flight

controller for automated collision avoidance amongst 2 aircraft.

This controller is designed to satisfy safety and liveness

requirements, implemented using Simulink and Stateflow, and

verified using safety and liveness monitors.

Keywords— Aircraft automated Collision Avoidance, Simulink,

Simulation, Analysis, Safety Requirements, Liveness Requirements,

Verification, Validation, Controls

I. INTRODUCTION

Aircraft collision avoidance algorithms are important to the
safe flight in this modern age. If multiple aircraft are in the air
at the same time, catastrophic problems can occur if one
aircraft were to run into another. To avoid this aircraft
controllers must be able to automatically sense and avoid
nearby aircraft by altering their trajectory before such an issue
can occur. The focus of this paper will be on the development
and analysis of a 2-D flight controller with built-in automated
collision avoidance.

II. BASIC CONCEPTS

A. 2-D Flight Concepts

 For the purposes of automated collision avoidance flight
may be simplified to three primary concepts; orientation,
direction, and motion. The orientation of an aircraft in 3-D
space is usually described with the terms roll, pitch, and yaw
shown in Figure 1. These refer to the angular rotations about
the x, y, and z axes. However, for the 2-D case we can drop
roll and pitch, leaving only yaw about the y axis as illustrated
in Figure 2. This restricts orientation to a single degree of
freedom about the z axis and restricts the aircraft position to
the x-y plane as illustrated in Figure 3.

Figure 1: Orientation of Aircraft 3-D

Figure 2: Orientation of Aircraft in 2-D

Figure 3: x-y plane

 The orientation state-space may be reduced further by
restricting the direction of flight to only along the x and y axes,
restricting orientation angles to 0, 90, 180, and 270 degrees as
illustrated in Figure 4.

Figure 4: Restricted X and Y Axes Direction and Orientation

 To simplify the motion of an aircraft a constant velocity
may be assumed.

B. Simulink

Simulink is a model-based design and simulation tool that
provides a graphical framework for developing and simulating
control software. The tool allows for the model-based creations
of signal flow diagrams in which results can be displayed to a
graph. The tool allows simulation time steps to be fixed-step.
[1] The following are list of Simulink Components used for
software associated with this paper.

• Constant

• Scope

• Subsystem

• Delay

C. Stateflow

Stateflow is a Simulink integrated tool that allows the
creation of state-machines diagrams. The diagrams can
interface with the signal flows at each timestep in a simulation.
Stateflow supports extended-state machine notation. [2] The
following are list of Stateflow Components used for software
associated with this paper.

• Chart

• Transition

• Junction

D. Synchronous Model

Synchronous components receive inputs and produce
outputs (execute) based on a sequence of rounds. [3] The fixed-
time step simulation capability of Simulink allows the
synchronous model to be utilized when designing components.

E. Continuous-Time Model

Physical components receive inputs and produce outputs
based on a continuous-time model. The continuous-time model
is like the synchronous model in that components execute in a
sequence of rounds; however, it differs in that the time steps
are infinitely small because time is continuous. [3] Therefore,
continuous-time components react by approximating the
solution to a differential equation.

F. Hybrid Systems

Hybrid Systems involved the integration of multiple
reactive component models. [3] For this Aircraft Collision
Avoidance Controller simulation the two integrated component
models are the Synchronous and continuous-time models.

G. Saftey

Safety requirements are a formal method of describing the
correctness of the system. Safety requirements are written as
Boolean-valued statements (known as invariants) that must not
be violated by any reachable state. The intuition of safety
requirements is to ensure that nothing bad every happens (i.e.
two aircraft run into each other). [3]

H. Liveness

Liveness requirements are a formal method of describing
the behavior of the system over time. Safety requirements are
written using Linear Temporal Logic (LTL). The intuition of
liveness requirements is to ensure that something good
eventually happens. [3]

III. PROBLEM

A. Requirements

An indexed list of a natural language requirements for this
2-D controller design (provided by the class assignment []) are
provided below.

1. The aircraft can fly in a 2-D plane. Its source and
destination are integer-valued points in. [4]

2. The aircraft flies with a constant velocity v = 1 km/minute
along either X-axis or Y-axis. [4]

3. The aircraft controller can update direction of flight every k
= 1 minutes. Note that, it can decide to either fly straight
or rotate left or right by 90 degrees but not turn back. [4]

4. At the beginning of every k = 1 minutes,

1. The controller can exchange messages with any
aircraft in a square region with side length 2q = 6
km (communication zone) in the vicinity of the
aircraft as shown in figure below. [4] Refer to
Figure 5 for a communication zone and danger
zone diagram. (Note: This has been adjusted from

Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box.

the referenced requirements from 4 km to 6 km to
avoid a failing edge case. See VIII, B for
details.)

2. Based on the messages received and the current
state of the aircraft, the controller can update the
direction of flight. [4]

5. Collision Avoidance: Each aircraft has a square region with
side length 2d = 1 km (danger zone) around it such that no
aircraft should enter this region at any time during the
flight as shown in figure below. Refer to Figure 5 for a
communication zone and danger zone diagram. [4]

6. The source locations are distinct locations for different
aircraft. [4]

7. Once an aircraft reaches its destination, it is no longer a
threat and collision avoidance is not required for this
aircraft. Also, the aircraft stops sending messages to the
other aircraft in its vicinity. [4]

Figure 5 Communication Zone and Danger Zone [4]

8. Further, we assume that the airspace consists only of two
aircraft that start at time t = 0. The goal here is to design a
controller (same algorithm for both aircraft) that ensures
that each aircraft reaches its destination in as small time as
possible while ensuring collision avoidance. In the
problem, the sources and destinations for aircraft are
provided as parameters and the designed controller should
work with all such source-destination pairs. [4]

B. Formalized Saftey Requirements

The primary safety requirement of this flight controller this
that no aircraft should ever enter 1000 m danger zone of
another aircraft. This invariant can be formally written:

• ((X_State_Aircraft – Danger_Zone <= X_Incoming_Aircraft) Λ
(X_Incoming_Aircraft <= X_State_Aircraft + Danger_Zone)) ¬ = True

• ((Y_State_Aircraft – Danger_Zone <= Y_Incoming_Aircraft) Λ
(Y_Incoming_Aircraft <= Y_State_Aircraft + Danger_Zone)) ¬ = True

C. Formalized Liveness Requirements

The primary liveness requirement of this flight controller

is that each aircraft must eventually (◊) reach their destination.

This liveness requirement may be formally written as:

• ◊(X_State_Aircraft = Aircraft_X_Dest Λ Y_State_Aircraft =

Aircraft_Y_Dest)

IV. AIRCRAFT COLLISION AVOIDENCE SOLUTION

 To satisfy the requirements above we utilize Simulink and
Stateflow to build up two aircraft subsystems and a
communications environment subsystem inside of the
Synchronous (fixed-step) Simulink model. The aircraft
subsystems are duplicates of each other. Inside of each aircraft
subsystem is a Stateflow chart containing the aircraft collision
avoidance controller logic. The controller logic ensures that the
aircraft meets the requirements above while traveling from and
initial state to a final state. This includes formalized safety and
liveness requirements. Inside of the communications subsystem
are two identical Stateflow charts that contain the
communication environment logic. The communication
environment logic simulates the physical message environment
by marking whether a message is within the communication
zone of the aircraft at a given step in the simulation.

V. INPUT, OUTPUT, STATE COMPONENT SPECIFICATION

DETAILS

A. Aircraft Subsystem Specification

The designed specification for the aircraft subsystem is
bulleted below.

• Inputs
o Constant Integer {0, 90, 180, 270} Initial Orientation (degrees)

of Aircraft
o Constant Integer Initial X Coordinate (m) Aircraft
o Constant Integer Initial Y Coordinate (m) Aircraft
o Constant Integer X Destination Coordinate (m) Aircraft
o Constant Integer Y Destination Coordinate (m) Aircraft
o Integer X Message In (m)
o Integer Y Message In (m)
o Integer {0, 90, 180, 270} Orientation Message In
o Integer {0 1} Message Received In
o Integer Rounds to Avoid Upon Communication
o Constant Integer Danger Zone In (m) = 500 (m)
o Constant Integer Turn Time In = 1000 (m)

• Outputs
o Integer X Out (m)
o Integer Y Out (m)
o Integer {0, 90, 180, 270} Orientation Out (m)
o Integer {0 1} Danger Zone Breached out
o Integer X Message Out
o Integer Y Message Out
o Integer {0, 90, 180, 270} Orientation Message Out

B. Aircraft Collision Avoidence Controller Specification

The designed specification for the aircraft collision
avoidance controller is bulleted below.

• Inputs
o Constant Integer {0, 90, 180, 270} Initial Orientation (degrees)

of Aircraft
o Constant Integer Initial X Coordinate (m) Aircraft
o Constant Integer Initial Y Coordinate (m) Aircraft
o Constant Integer X Destination Coordinate (m) Aircraft
o Constant Integer Y Destination Coordinate (m) Aircraft
o Integer X Message In (m)
o Integer Y Message In (m)
o Integer {0, 90, 180, 270} Orientation Message In
o Integer {0 1} Message Received In
o Integer Rounds to Avoid Upon Communication
o Constant Integer Danger Zone In (m) = 500 (m)
o Constant Integer Turn Time In = 1000 (m)

• Outputs
o Integer X Out (m)
o Integer Y Out (m)
o Integer {0, 90, 180, 270} Orientation Out (m)
o Integer {0 1} Danger Zone Breached out

• States

o Integer Y_State
o Integer X_State
o Integer {0, 90, 180, 270} Orientation_State
o Integer Rounds_State
o Integer Turning State

C. Communication Environement Subsystem Specification

The designed specification for the communication
environment subsystem is bulleted below.

• Inputs
o Constant Integer Comm Zone In = 3000 m
o Integer X In Aircraft 1
o Integer Y In Aircraft 1
o Integer X Message In Aircraft 2
o Integer Y Message In Aircraft 2
o Integer {0, 90, 180, 270} Orientation Message In Aircraft 2
o Integer X In Aircraft 2
o Integer Y In Aircraft 2
o Integer X Message In Aircraft 1
o Integer Y Message In Aircraft 1
o Integer {0, 90, 180, 270} Orientation Message In Aircraft 1

• Outputs
o Integer X Message Out From Aircraft 2
o Integer Y Message Out From Aircraft 2
o Integer {0, 90, 180, 270} Orientation Out From Aircraft 2
o Integer {0 1} Send Message Out From Aircraft 2
o Integer X Message Out From Aircraft 1
o Integer Y Message Out From Aircraft 1
o Integer {0, 90, 180, 270} Orientation Out From Aircraft 1
o Integer {0 1} Send Message Out From Aircraft 1

D. Communication Environement Specification

The designed specification for the communication
environment is bulleted below.

• Inputs
o Constant Integer Comm Zone In = 3000 m
o Integer X In Aircraft
o Integer Y In Aircraft
o Integer X Message In Aircraft
o Integer Y Message In Aircraft
o Integer {0, 90, 180, 270} Orientation Message In Aircraft

• Outputs
o Integer X Message Out From Aircraft
o Integer Y Message Out From Aircraft
o Integer {0, 90, 180, 270} Orientation Out From Aircraft
o Integer {0 1} Send Message Out From Aircraft

VI. HYBRID SYSTEM MODEL DETAILS

A. Synchronous Simulation Model

The simulation model follows a synchronous (fixed-step)
model in which each simulation time step is equivalent to
1/1000th of a minute of physical system time.

B. Synchronous Controller Model

The reactive controller algorithm runs as a synchronous
model where each time step is equivalent to 1 simulation time
step. The aircraft travels at a constant velocity of 1 km/min,
and therefore moves 1 m per 1 simulation time step. Therefore,
the controller may update its internal states every 1 simulation
time step, or equivalently 1 m travelled.

C. Synchronous Enviroment Model

The communications environment model follows a
synchronous model in which the time step is equivalent to the
simulation time-step. A real communications environment
follows a complex continuous-time model, however it is
modeled as a synchronous model here for simplicity, since it
does not affect the results of the aircraft controllers.

D. Continous-Time Physical Model

The velocity of the aircraft follows a continuous-time
model. However, because the velocity (dx/dt) is a constant 1
km/min (i.e. 1/1000 m/s), and the synchronous controller runs
off of a 1/1000th of a second timestep, the controller can
calculate the position of the aircraft at any given point and
likewise adjust it by incrementing or decrement its x or y
position according to its current orientation.

VII. ALORITHMS DETAILS

A. AircraftCollisionAvoidanceController (Top-Level)

The AircraftCollisionAvoidanceController is built using
hierarchical extended-state machines. At the top-level, there
are two modes; a Controller mode containing the flight control
and collision avoidance logic, and a Final mode in which the
either the destination has been reached or the danger zone
around the aircraft has been breached. Refer to Figure 6 for the
AircraftCollisionAvoidanceController Top-Level structure
Stateflow implementation.

Figure 6: AircraftCollisionAvoidanceController (Top-Level)

B. Flight Control Alorithm

The flight control algorithm logic is contained inside of the
top-level Controller mode. One level down (second level) in
the Controller mode, we initialize the controller in the Initialize
mode. Refer to Figure 7 for the Stateflow implementation.

Figure 7: Initalize Mode For Flight Controller

After initialization, the state transitions to one of the 4
surrounding second level CollisionAvoidanceMonitor modes
depending on the initial flight orientation of the aircraft (0, 90,
180, 270 degrees). Refer to Figure 8 for the Stateflow
implementation CollisionAvoidanceMonitor for the 0 degree
orientation.

Figure 8: CollisionAvoidanceMonitor Mode

Inside the a CollisionAvoidanceMonitor mode the state
switches to a Traveling mode (3 level down in the Controller
mode) in which the mode increments or decrements the
position of the plane 1 meter along either the x axis or y axis,
respective to the orientation, every 1/1000th of a minute (or
simulation step). Refer to Figure 9 for at the Stateflow
implementation of the Traveling mode.

Figure 9: Traveling Mode

While inside of a CollisionAvoidanceMonitor and traveling
along an axis there are 3 possible transitions out of the
CollisionAvoidanceMonitor that may occur due to the aircraft x
and y state position relative to the x and y destination positon.
The possible transitions for the CollisionAvoidanceMonitor0
for the 0 degree orientation are bulleted below.

1. If [(X_In<=X_State) && (Y_In=>Y_State)],
then transition to CollisionAvoidanceMonitor90

2. If [(X_In<=X_State) && (Y_In<Y_State)], then
transition to CollisionAvoidanceMonitor270

3. If [(Y_In==Y_State) && (X_In==X_State)],
then transition to Final

Since the turn requires 1000 meters to complete, the turn
modes wait 1000 meters to complete to transition to the next
modes and adjust their orientations. Similar logic applies the
other CollisionAvoidanceMonitor modes. This enables the
aircraft to always traverse to the final destination in shortest
path possible, given the orientation constraints.

C. Collision Avoidence Control Alorithm

 The collision avoidance algorithm is contained in and
tailored to the 4 CollisionAvoidanceMonitor modes. To
describe the logic we exam the CollisionAvoidanceMonitor0
mode from Figure 8. Inside of this mode we have 7 modes. The
initial mode is Traveling0, which maintains a transition into
itself allowing causing it to increment the x position state of the
aircraft 1 meter every simulation time step.

However, if a message from the second aircraft is received
and its orientation is facing the current aircraft in the x or y
direction, then a transition fires to a turning mode. There are
two turning modes; a Turn90 mode, which turns the aircraft to
a 90 degree orientation, and a Turn270, which turns the aircraft
to a 270 degree orientation. Since the turn requires 1000 meters
to complete, the turn modes wait 1000 meters to complete to
transition to the next modes and adjust their orientations. Refer
to Figure 10 for the Stateflow implementation of the collision
avoidance turn transitions.

Figure 10: Collision Avoidence Turn Transitions

After the turn modes have waited 1000 meters, the state
transitions to the AvoidCollisionTraveling90 and
AvoidCollisionTraveling270 modes, respectively. In these
modes, the aircraft increments or decrements the y position,
respectively, for as long as the message is still received, and
the position and orientation still pose a threat to the danger
zone. (Note: The implementation allows for an optional
parameter to be set that to specifies the minimum number of
rounds that the aircraft must remain in an avoidance mode
before it can test if a message is still received and exit. When
this parameter is set to zero you know you have the aircraft
will avoid to the minimum distance needed to leave the
communication zone of the other aircraft, or until the position
and orientation of the other aircraft no longer poses a threat to
the danger zone.) Refer to Figure 11 for the Stateflow
implementation of the collision avoidance modes.

Figure 11: Collision Avoidence Modes

Once the message is no longer received, or the position no
longer poses a threat to the danger zone, the controller initiates
a turn back to the 0 orientation. After the 1000 meter turn is
complete, the state transitions back to the 0 orientation and
returns to incrementing the x direction position. Refer to Figure
12 for the Stateflow implementation of the return to Traveling
mode logic.

Figure 12: Return To Traveling Mode Logic

A similar collision avoidance algorithm has been written
for the other 3 CollisionAvoidanceMonitor modes.

D. Communication Enviroment Modeling

The communication environment for each aircraft is
combinational component and is modeled using an extended-
state machine with one mode and 3 cyclic transitions. Each
round the environment outputs the x position message and y
position message of the other aircraft and a flag that says
whether or not the message is within the 3000 meter range of
the aircraft so that it may be received it. If the other aircraft is
within the 3000 meter range, then the aircraft controller will
receive the message. If the other aircraft is outside of the 3000
meter range, then the aircraft controller will not receive the
message. Refer to Figure 13 for the Stateflow implementation
of the communications environment for an aircraft.

Figure 13: Aircraft Communications Environment

E. Saftey Monitor Error State

A transition from the Top-level Controller mode to the
ErrorDangerZoneBreached mode in the To-Level Final mode
is used to monitor our primary safety requirements regarding
the danger zone. If at any point before DestinationReached
mode in the Final mode is reached, a x position and y position
message is received from the other aircraft that it has is within
the danger zone, the transition fires and switches the state to
the ErrorDangerZoneBreached mode. Therefore, there are
only two outcomes for which the Final mode may be reached;
either the aircraft has arrived at its destination, or the aircraft’s
danger zone was breached, and the automatic collision
avoidance controller failed. Equivalently, either our safety
requirement is satisfied, or it is not satisfied.

VIII. VERIFICATION & VALIDATION DETAILS

A. Verification & Validation Results

To verify the successful implementation of our aircraft
controller algorithm we look at 4 Simulink scopes; two for
each aircraft. One will display the current x, y, and orientation
information of the aircraft, and one will display the results of
DangerZoneBreached flag. We set up a worst-case scenario, in
which the two aircraft are heading directly towards each other
on the same axis, to test our collision avoidance controllers.
The specifications of this test are indexed below.

1. Aircraft 1:
a. {0, 90, 180, 270} Initial Orientation (degrees) of Aircraft 1 = 0
b. Initial X Coordinate (m) Aircraft 1 = 0
c. Initial Y Coordinate (m) Aircraft 1 = 0
d. X Destination Coordinate (m) Aircraft 1 = 4000
e. Y Destination Coordinate (m) Aircraft 1 = 0

2. Aircraft 2:
a. {0, 90, 180, 270} Initial Orientation (degrees) of Aircraft 1 = 180
b. Initial X Coordinate (m) Aircraft 1 = 4000
c. Initial Y Coordinate (m) Aircraft 1 = 0
d. X Destination Coordinate (m) Aircraft 1 = 0
e. Y Destination Coordinate (m) Aircraft 1 = 0

3. Simulation Parameters:
a. Turn Time = 1000
b. Comm Zone = 3000
c. Rounds To Avoid Upon Communication (m) = 0
d. Danger Zone (m) = 500
e. Simulink: Fixed-Step Discrete (Auto)
f. Simulink Simulation Start Time: 0
g. Simulink Simulation End Time: 10000

 There are 4 primary requirements we need to reason about
per aircraft; two safety requirements (as specified above), and
one liveness requirement (as specified above). To verify that
our safety requirements we monitor the Danger Zone Monitor
scope to ensure that it always take on the value 0 (false), and
never takes on the value 1 (true). To verify that our liveness

requirements we monitor the X, Y, Orientation scope to ensure
that the final destination is eventually reached. The X, Y,
Orientation scope shows the path taken by the aircraft to avoid
the collision.

 Refer to Figure 14 for the Danger Zone Monitor scope
simulation results. The simulation results of the safety monitors
reveal no breaches of the danger zone and prove that our safety
requirements are satisfied in the context of this simulation.

Figure 14: X, Y, Danger Zone Monitor Scope Simulation
Results (Aircraft 1 is on the left, Aircraft 2 is on the right)

 Refer to Figure 15 for the Simulink X, Y, Orientation scope
simulation results. As shown, Aircraft 1 begins by moving
along the x positive direction (orientation of 0), and Aircraft 2
begins by move along the negative x direction (orientation of
180). When one aircraft come within communication range of
each other (approx. at x = 500 meters for Aircraft 1, and x =
3500 meters for Aircraft 2), they initiate a turn (which takes
1000 meters to become effective). When the turn becomes
effective (approx. at x = 1500 m for Aircraft 1, and x = 2500
meters for Aircraft 2) Aircraft 1 switches it’s orientation to 90
and travels along the y axis in the positive direction until
Aircraft 2’s orientation is no longer heading towards Aircraft 1.
Likewise, Aircraft 2 switches it’s orientation to 270 and travels
along the y axis in the negative direction until Aircraft 1’s
orientation is no longer heading towards Aircraft 2. Because
they are traveling opposite of each other immediately, they
both detect that the orientation of the other aircraft is no longer
poses an issue and they immediately initiate a turn back to their
original orientation (which takes 1000 meters to become
effective). Therefore, they are approximately 2000 meters
away from each other when the turn is finished. Because the
communication range is 3000 meters and they are only 2000
meters away at this point, they both immediately initiate a
collision avoiding again in the same manner because their
orientations are facing each other again. After the process
repeats a second time they are a total of 4000 meters away
from each other, outside of the communication range, and there
for, continue to their x destinations directly. When they are
1000 meters away from their x destinations they initiate a turn
(which takes 1000 meters to become effective) so that they
arrive at their x destination and turn at the appropriate point.
Aircraft 1 turns to an orientation of 270 degrees and
decrements back the y destination of 0 meters, and Aircraft 2
turns to an orientation of 90 degrees and increments back the y
destination of 0 meters. Since the destinations of both aircraft
are eventually reached, the liveness requirements are satisfied.

Figure 15: X, Y, Orientation Scope Simulation Results (Yellow
= X Position, Blue = Y Position, Orange = Orientation)

(Aircraft 1 is on the left, Aircraft 2 is on the right)

B. Force a Failure for Illustration Purposes

To illustrate what a failure would look like in this aircraft
collision avoidance controller we must adjust our required
communication zone of 3000 meters down 2000 meters and
force a failure. We set this simulation to illustrate what a
failure due to this requirement change would look like. This
simulation will be equivalent to our verification simulation
above, only the communication zone has decreased. The
specifications of this test are indexed below.

1. Aircraft 1:
a. {0, 90, 180, 270} Initial Orientation (degrees) of Aircraft 1 = 0
b. Initial X Coordinate (m) Aircraft 1 = 0
c. Initial Y Coordinate (m) Aircraft 1 = 0
d. X Destination Coordinate (m) Aircraft 1 = 4000
e. Y Destination Coordinate (m) Aircraft 1 = 0

2. Aircraft 2:
a. {0, 90, 180, 270} Initial Orientation (degrees) of Aircraft 1 = 180
b. Initial X Coordinate (m) Aircraft 1 = 4000
c. Initial Y Coordinate (m) Aircraft 1 = 0
d. X Destination Coordinate (m) Aircraft 1 = 0
e. Y Destination Coordinate (m) Aircraft 1 = 0

3. Simulation Parameters:
a. Turn Time = 1000
b. Comm Zone = 2000 (Adjusted)
c. Rounds To Avoid Upon Communication (m) = 0
d. Danger Zone (m) = 500
e. Simulink: Fixed-Step Discrete (Auto)
f. Simulink Simulation Start Time: 0
g. Simulink Simulation End Time: 10000

Refer to Figure 16 for the Danger Zone Monitor scope
simulation results. As illustrated our safety requirements are
not satisfied in this forced failure case as the danger zone
monitors show that both aircraft had their danger zones
breached approximately 1800 steps into the simulation.

Figure 16: X, Y, Danger Zone Monitor Scope Simulation
Results (Aircraft 1 is on the left, Aircraft 2 is on the right)

Refer to Figure 17 for the Simulink X, Y, Orientation scope
simulation results. To illustrated why our safety requirements
were violated we can look at X, Y, Orientation scope
simulation results. As shown both aircraft head directly into
each other and violate their danger zone safety requirements.
This happens because the aircraft are heading towards one
another and their velocities are compounded. Because the
communication zone (in this forced failure case) is 2000
meters, and it takes 1000 meters to turn from the first
notification of an oncoming aircraft, neither of them would be
able to turn until they are directly on top of one another, since
their relative velocities are compounded. Therefore, though
both aircraft initiate turns, they are not able to complete the
turns before violating their danger zone safety requirements.
As illustrated when Aircraft 1 passes approximately 1750
meters on the x axis and Aircraft 2 drops below approximately
2250 meters on the x axis (i.e. below a 500 meter distance from
each other), one of our danger zone safety requirements is
breached.

Figure 17: X, Y, Orientation Scope Simulation Results (Yellow
= X Position, Blue = Y Position, Orange = Orientation)

(Aircraft 1 is on the left, Aircraft 2 is on the right)

IX. CONCLUSION

We have illustrated the design, implementation, and
verification of a 2-D automated collision avoidance controller.
We converted the requirements into formal safety and liveness
requirements and designed component specifications. The
controller was implemented into a Simulink and Stateflow
simulation environment, and verified using safety and liveness
requirement monitors.

REFERENCES

[1] mathworks.com, ‘Simulink’, 2018. [Online]. Available:

https://www.mathworks.com/products/simulink.html. [Accessed: 11-
Dec- 2018].

[2] mathworks.com, ‘Stateflow’, 2018. [Online]. Available:
https://www.mathworks.com/products/stateflow.html. [Accessed: 11-
Dec- 2018].

[3] R. Alur, Principles of Cyber-Physical Systems, 1st ed. Camebridge,
Massachusetts: The MIT Press, 2015.

[4] brightspace.vanderbilt.edu, ‘CS 6376: Foundations of Hybrid and
Embedded Systems Fall 2018 Project: Aircraft Collision Avoidance’,
2018. [Online]. Not Publically Available:
https://brightspace.vanderbilt.edu/d2l/le/content/85900/viewContent/873
623/View [Accessed: 11-Dec- 2018].

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/stateflow.html
https://brightspace.vanderbilt.edu/d2l/le/content/85900/viewContent/873623/View
https://brightspace.vanderbilt.edu/d2l/le/content/85900/viewContent/873623/View

