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Colored Petri Nets are a directed graph modeling approach 

utilized to reason about race conditions and deadlocks within 

concurrent systems. We present a Design Studio approach to 

develop, simulate, and analyze Colored Petri Nets. Our 

implementation consists of a modeling environment developed 

within WebGME, and a series of Python plugins for the simulation 

and analysis of Colored Petri Nets. The target audience for this 

paper and tool are for those seeking to reason about dead locks and 

race conditions within concurrent systems. 
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I. INTRODUCTION 

Petri nets were originally developed by Carl Adam Peri in 
1962 and were the subject of his dissertation. [1] Since that 
time, Petri nets have been extended into Colored Petri Nets 
(CPNs) which are a backwards compatible specification that 
provide additional functionality. Colored Petri Nets have been 
applied to a wide variety of applications including: office 
automation, work-flows, flexible manufacturing, programming 
languages, protocols and networks, hardware structures, real-
time systems, performance evaluation, operations research, 
embedded systems, defense systems, telecommunications, 
Internet, e-commerce and trading, railway networks, and 
biological systems. [1] The Colored Petri Net Design Studio 
described in this paper is focused on concurrent systems.  

II. COLORED PETRI NETS 

A. Basic Colored Petri Net Concepts 

A Colored Petri Net (abbrev. CPN) is a collection of 
directed arcs connecting places to transitions and transitions to 
places. Places may hold colored tokens. Colors represent a type 
of token, and a number of colored tokens represent a value 
from that color set. Arcs either connect from a place to a 
transition or from transition to a place (i.e. a map from a set of 
colors to integer values which describe how many tokens a 
place can contribute to the threshold of the transition). Arcs 
from a place to a transition contain a capacity (i.e a map from a 
set of colors to integer values which describe how many tokens 
are added to a place when the transition fires). Arcs from a 
transition to a place contain a weight (i.e. set of colored 
tokens). Each transition has a minimum threshold requirement 

(i.e. a map from a set of colors to integer values which describe 
how many tokens are required for the transition to be enabled).  
At this point we note that the above is the simplest form of a 
CPN. One can extend CPN Arcs to have expressions such as 
relative number of tokens and so on. We have added one such 
extension, which is a maximum number of tokens for a 
transition, after which the transition again becomes disabled. 
Transitions may either be enabled (able to fire) or disabled (not 
able to fire) depending on if the threshold requirement is 
satisfied by the number of colored tokens in the originating 
places and their ability to contribute those tokens by the 
connected arc capacities. Only one enabled transition is fired at 
every step of a simulation. If a transition fires, tokens are 
removed from the originating places according to the capacities 
of the associated arcs respectively and tokens are placed in 
connected places according to arc weights connected to those 
places. Refer to Figure 1 for an illustration of a basic Petri Net 
(assume 1 token color).  

Figure 1: Petri Net
 

Figure 1: Petri Net [2] 



In Figure 1 the Petri Net before firing is shown on top, and 
the corresponding Petri Net after firing is shown on bottom. 
The circles represent places, the arrows represent arcs and the 
line in the center represents a transition. Each dot in a place 
represents a single token the place currently holds. The two 
arcs connecting the places to the transition have capacities of 2 
and 1 as illustrated by the values placed in the middle of the 
arc. The arc connecting the transition to the place has a weight 
of 2 as illustrated by the value placed in the middle of the arc. 
The transition has a threshold value of the variable t associated 
with it, however this should be replaced with an integer value 
in order to simulate it. Since the graphic contains the variable t 
we will assume that it is replaced with the value 2 for this 
example to make sense. Since the transition has a threshold has 
a value of 2 (as we just defined) it is enabled in the top diagram 
because both originating places have 2 tokens. Thus, we could 
fire this transition. When fired, 2 tokens would be taken from 
the top place, as the capacity of that arc is 2, while only 1 token 
would be taken from the bottom place, as the capacity of that 
arc is only 1. Subsequently, 2 tokens would be added to the 
place on the right, as the weight of that arc is 2. Furthermore, in 
subsequent rounds the transition would not be enabled. While 
the capacity of the arcs and the threshold does not change, the 
number of tokens the places have does, which means they are 
now incapable of contributing tokens to meet the required 
threshold of 2. The result of the firing can be seen in the 
bottom diagram. Since the top originating place had 2 tokens 
and its associated arc had a capacity of 2, 2 tokens were 
removed from the place. Since the bottom originating place 
had 2 tokens, but the associated arc only had a capacity of 1, 
only one token was removed, leaving one token remaining. The 
weight associated with the arc connecting from the transition to 
the destination place is 2. Therefore, upon firing 2 tokens are 
placed in the destination place as shown in the bottom figure. 

B. Formal Definitions for Colored Petri Nets 

Bulleted below is a formal definition of Colored Petri Net. 

• A Colored Petri net is a tuple M=(P, T, A, S, N, E, G, 
I) [3] 

o P is a set of places (a state with colored 
tokens) [3] 

o T is a set of transitions (a collection point for 
activating an action) [3] 

o A is a set of arcs (links places to transitions 
and vice versa) [3] 

o S is set of color sets defined within CPN 
model [3] 

o N is a node function (defines what arcs link 
which places to transitions and vice versa) [3] 

o E defines what the restrictions on arcs are 
(capacity and weight) [3] 

o G defines the values on Transitions 
(activation requirements) [3] 

o I is an initial state for the Petri Net [3] 

C. Basic Concurrent Systems Concepts 

Concurrent systems provide an advantage by using parallel 
processing (i.e. multiple tasks being performed concurrently on 
multiple processors/cores) to decrease computational time. 
However, with those benefits come risks such as race 
conditions and deadlocks. 

• A Race condition occurs when a process A requires 
process B to have arrive at state S before process A 
arrives as state S in order to perform correctly, 
however process A ends up arriving at state S before 
process B arrives. 

• A Deadlock occurs when process A is in state S1 and 
needs access to state S2, but state S2 is locked by 
process B, who needs access to state S1, which is 
locked by process A.  

The above conditions are difficult to reason about, detect, 
and debug, because they are not guaranteed to be replicable as 
they depend upon careful timing conditions which may vary 
between runs and be disrupted by debugging. Therefore, in 
order to avoid such conditions, a more careful analysis is 
required and CPNs are can be used for this. 

D. Basic WebGME Concepts 

WebGME is a Meta-Modeling plugin-based web-
framework. It is used to graphically design a meta-model 
(partially UML2.0 based) for an engineering domain of 
interest, and then create domain specific models from the meta-
model within the same framework. It has a JavaScript and 
Python plugin-based environment in which a user can write 
their own plugins. The JavaScript or Python plugins for 
WebGME may be written to simulate, analyze, and visualize 
the domain specific models or to interpret the models into a 
common exchange formats (e.g. XML) to be imported into 3rd 
party tools. The designed domain-specific modeling 
environments is referred to as a Design Studio. We utilized 
WebGME to develop a Colored Petri Net design, simulation, 
and analysis tool. 

III. COLORED PETRI NETS DESIGN STUDIO 

A. Design Studio 

 A Design Studio provides a framework for the modeling 
and analysis of an engineering domain. [4] The Colored Petri 
Net Design studio provides a framework for which user can 
design, simulate, and analyze a concurrent network to reason 
about deadlocks and race conditions. 

 First, we present the Colored Petri Net Meta-Model 
specification within the framework. Second, we present a 
Domain Specific Model which is created from Meta-Model 
component instances. Third, we present a series of Python 
plugins for simulation, analysis, and visualization.   
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IV. COLORED PETRI NETS META-MODEL 

A. Meta-Model Specification 

Refer to Figure 2 for the Colored Petri Net Meta-Model 
designed in WebGME. As seen, everything inherits from the 
FCO parent. The Colored Petri Net has a one-to-many 
containment relationship with the abstract Petri Object. This 
provides a Colored Petri Net Instance with access to places, 
transitions, and arcs. 

The Colored Petri Net meta-node contains several 
attributes. InitialState, IsDeterministic, Iteration, and 
StateSpace are meant to act either as outputs or storage for 
plugins. ColorSet, on the other hand, defines a set of colors 
which may be used by Petri Objects. 

Petri Objects all have one attribute, Tokens, but its meaning 
changes with the type of Petri Object. For a Place, the Tokens 
attribute defines how many tokens are currently present at that 
Place. For a Transition, the Tokens attribute defines how many 
tokens of each color are required for it to be enabled. For a 
Place to Transition Arc, the Tokens attribute defines the 
capacity of the Arc, i.e. how many tokens of a particular color 
may be contributed by this Place and how many tokens should 
be removed from the Place. For the Transition to Place Arc, the 
Tokens attribute defines the weight of the Arc, i.e. how many 
tokens of a particular color should be added to the Place. 

If a Petri Object uses a color that is not in the color set, the 
TokenSet constraint will flag a violation. Similarly, the 
NoRepeats constraint will flag a violation if a Petri Object 
utilizes the same color multiple times. 

 

 

Figure 2: Colored Petri Net Meta-Model 

V. COLORED PETRI NET DOMAIN SPECIFIC MODEL 

A. Domain Specific Model 

Domain specific models (DSMs) of Colored Petri Nets 

may be designed using the instances of meta-model 

components. The composition tab within the WebGME 

framework provides a visual workspace for the creation of 

such a model. Refer to Figure 3 for a DSM of a Colored Petri 

Net that was assembled utilizing the composition. As 

illustrated, colored tokens, thresholds, and weights have been 

applied to the model. In the current state the top left place has 

one blue token, the bottom left place has one red token, and 

each of the other places have no tokens. The top left place has 

a transition leading out and in. The threshold of the transition 

leading out has one blue token and the threshold of the 

transition leading in has 1 blue token and -1 red tokens. The -1 

red tokens, means that the transition will be disabled if there is 

a red token in the Resource place. A similar set of transitions 

are related to the bottom place. The transition between the 

resource and deadlock state have a threshold of 1 red token, 

and one blue token. This demonstrates that the transition to a 

deadlock place is enabled if both process A & process B 

access the Resource at the same time.  

 

 
Figure 3: Colored Petri Net DSM 

B. Python Simulation Plugins 

We provide several plugins by which we may simulate a 
Colored Petri Net or which simplify certain usage aspects. 

NextStep: This is a python plugin which, based on the 
current state of the Net, picks an enabled transition at random 
from the set of all enabled transitions and fires it. The model is 
then updated to reflect this. 

TotalRun: Given the current state of the model, this plugin 
randomly picks an enabled transition to fire and records the 
new state. From the new state, it then repeats this process. This 
continues until there are no transitions to execute, or until a 
maximum number of iterations are reached. The maximum can 
be changed in the model. The final state is saved as the current 
state of the model. Provided the Naked python module is 
installed, then the plugin will also create an html file for a 
visual trace of states. 



AllPossible: Given the current state of the model, this 
plugin fires every enabled transition, and saves the resulting 
states. For each unique resulting state, this process is repeated. 
The process continues until no new unique states are generated, 
there are no transitions to fire, or a maximum number of 
iterations are reached. The model is not changed, but the trace 
of all states is recorded. Provided the Naked python module is 
installed, then the plugin will also create an html file for a 
visual trace of states. 

IsDeterministic: Given the current state of the model, this 
plugin acts as AllPossible. However, if at any step there is 
more than one enabled transition, then the process ends early, 
as the current state is not deterministic. If the process ends as a 
result of number of iterations, then the model will be updated 
with the information that it is deterministic so far. If it 
terminates because there are no additional unique states to 
consider and no new transitions which can fire, then the model 
is updated with the information that it is deterministic. 

SetInitialState: The model records the current state for 
future use. 

Reset: The model sets the current state to the initial state, 
which would have been set by SetInitialState.  

C. Visualization 

For visualizing and constructing CPNs, we utilize 
WebGME’s built in composition tool along with its 
customizable SVG Decorator. As WebGME can use ejs, 
Embedded JavaScript, we were able to relatively easily define 
dynamic elements which change their appearance based on 
certain attributes. In this case, the change is reflected by 
additional colored text appearing with the relevant object. 

In addition to this, as was mentioned above, two of our 
plugins provide ‘trace’ artifacts. In order for this functionality 
to fully work, the Naked module for Python is required. If it is 
present, the plugin will execute a node script and compile some 
ejs into an HTML file. If the module is not available, the 
plugin will instead return an ejs file which can be compiled 
into the HTML file. The trace provides a minimalistic 
representation of states, which hopefully allows for a fast 
visual comparison of consecutive states. 

D. Example 

Figure three show an illustration of a Colored Petri Net 
DSM designed within the Colored Petri Net Design Studio. 
This model consists of two processes; A and B. Both process A 
and process B need access to a shared resource during 
execution. If during and execution of the Petri net, both process 
A and process B access the shared resource at the same time 
the program will enter a deadlock state.  

In order to reason about this concurrent system we utilize 
the Python plugins describe above. We first run the 
SetInitialState plugin so a record of the token values for the 
current state are stored in InitialState attribute of the network 
node. Next we test if the current state is deterministic by 
running the IsDeterministic plugin. Refer to Figure 4 for the 
result. As illustrated the results populates the IsDeterministic 

attribute field with a value of False, because in the current sate 
both process A and process B are enabled. 

 

Figure 4: Result of IsDeterminstic Plugin 

We then run the NextStep plugin to see which process ends up 
firing in this non-deterministic state. Refer to Figure 5 for the 
result. As illustrated process B fired causing one red token to 
be removed from process B and one red token to be placed in 
the Resource. 

 

Figure 5: Result of NextStep plugin.  

 

We run IsDeterministic again to test whether the system is 
deterministic from this point. Refer to figure 5 for the result. 
As illustrated the results populates the IsDeterministic attribute 
field with a value of False, because in the current sate both 
process A and the Resource are enabled. 

 
Figure 5: Result of Second IsDeterministic Plugin 

We then run the NextStep plugin to see which process ends up 
firing in this non-deterministic state. Refer to figure 5 for the 
result. As illustrated the Resource fired, causing one red token 
to be removed from the Resource, and one red token to be 
placed in process B. In this case because process A did not fire, 
the simulation returned to the intial state and no dealock will 
occur.  



 

Figure 6: Result of NexStep plugin. 

In order to demonstrated the deadlock state being reached we 
run the TotalRun plugin which runs for the 15 iterations that 
are specified in the attribute field. Refer to Figure 7 for the 
results. As illustrated, the Deadlock state was reached, which 
indicates that some time during the 15 iterations the Resource 
was accessed by both process A and process B during the same 
state. 

 

Figure 7:  Reults of the TotalRun plugin. 

From this state we run the IsDeterministic plugin. Refer to 
Figure 8 for the result. As illustrated, the results of the 
IsDeterministic attribute field is populated with a value of 
True, because in the deadlock state there is no enabled 
transition.  

 

Figure 8: Result of the IsDeterministic Plugin 

 

We can reason about the entire reachabled statespace at a given 
state by running the AllPossible plugin. First, we run the reset 
plugin to return to our initial state of as shown in Figure 3. 

Then we run the AllPossible plugin. Refer to Figure 9 for the 
results of the run. As illustrated, the results show all reachable 
states from the initial state.  

 

  Figure 9: Results of the AllPossible Plugin 

VI. RESULTS 

We presented a Design Studio for Colored Petri Nets build 
on the WebGME framework. We described the Meta-Model 
for Colored Petri Nets as well as a Domain Specific Model 
example built from the Meta-Model component instances. We 
demonstrated the Colored Petri Net plugins that are used to 
simulate, analyze, and visualize the Colored Petri Net models 
to reason about concurrent systems. 
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