
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Colored Petri Nets Design Studio

Ronald Picard

CS 6388 Model-Integrated Computing

Vanderbilt University

Nashville, TN, USA

ronald.s.picard@vanderbilt.edu

Bernard Serbinowski

CS 6388 Model-Integrated Computing

Vanderbilt University

Nashville, TN, USA

bernard.serbinowski@vanderbilt.edu

Colored Petri Nets are a directed graph modeling approach

utilized to reason about race conditions and deadlocks within

concurrent systems. We present a Design Studio approach to

develop, simulate, and analyze Colored Petri Nets. Our

implementation consists of a modeling environment developed

within WebGME, and a series of Python plugins for the simulation

and analysis of Colored Petri Nets. The target audience for this

paper and tool are for those seeking to reason about dead locks and

race conditions within concurrent systems.

Keywords—Colored Petri Nets, WebGME, Meta-Modeling,

Domain Specific Modeling, Design Studio, Simulation, Analysis

I. INTRODUCTION

Petri nets were originally developed by Carl Adam Peri in
1962 and were the subject of his dissertation. [1] Since that
time, Petri nets have been extended into Colored Petri Nets
(CPNs) which are a backwards compatible specification that
provide additional functionality. Colored Petri Nets have been
applied to a wide variety of applications including: office
automation, work-flows, flexible manufacturing, programming
languages, protocols and networks, hardware structures, real-
time systems, performance evaluation, operations research,
embedded systems, defense systems, telecommunications,
Internet, e-commerce and trading, railway networks, and
biological systems. [1] The Colored Petri Net Design Studio
described in this paper is focused on concurrent systems.

II. COLORED PETRI NETS

A. Basic Colored Petri Net Concepts

A Colored Petri Net (abbrev. CPN) is a collection of
directed arcs connecting places to transitions and transitions to
places. Places may hold colored tokens. Colors represent a type
of token, and a number of colored tokens represent a value
from that color set. Arcs either connect from a place to a
transition or from transition to a place (i.e. a map from a set of
colors to integer values which describe how many tokens a
place can contribute to the threshold of the transition). Arcs
from a place to a transition contain a capacity (i.e a map from a
set of colors to integer values which describe how many tokens
are added to a place when the transition fires). Arcs from a
transition to a place contain a weight (i.e. set of colored
tokens). Each transition has a minimum threshold requirement

(i.e. a map from a set of colors to integer values which describe
how many tokens are required for the transition to be enabled).
At this point we note that the above is the simplest form of a
CPN. One can extend CPN Arcs to have expressions such as
relative number of tokens and so on. We have added one such
extension, which is a maximum number of tokens for a
transition, after which the transition again becomes disabled.
Transitions may either be enabled (able to fire) or disabled (not
able to fire) depending on if the threshold requirement is
satisfied by the number of colored tokens in the originating
places and their ability to contribute those tokens by the
connected arc capacities. Only one enabled transition is fired at
every step of a simulation. If a transition fires, tokens are
removed from the originating places according to the capacities
of the associated arcs respectively and tokens are placed in
connected places according to arc weights connected to those
places. Refer to Figure 1 for an illustration of a basic Petri Net
(assume 1 token color).

Figure 1: Petri Net

Figure 1: Petri Net [2]

In Figure 1 the Petri Net before firing is shown on top, and
the corresponding Petri Net after firing is shown on bottom.
The circles represent places, the arrows represent arcs and the
line in the center represents a transition. Each dot in a place
represents a single token the place currently holds. The two
arcs connecting the places to the transition have capacities of 2
and 1 as illustrated by the values placed in the middle of the
arc. The arc connecting the transition to the place has a weight
of 2 as illustrated by the value placed in the middle of the arc.
The transition has a threshold value of the variable t associated
with it, however this should be replaced with an integer value
in order to simulate it. Since the graphic contains the variable t
we will assume that it is replaced with the value 2 for this
example to make sense. Since the transition has a threshold has
a value of 2 (as we just defined) it is enabled in the top diagram
because both originating places have 2 tokens. Thus, we could
fire this transition. When fired, 2 tokens would be taken from
the top place, as the capacity of that arc is 2, while only 1 token
would be taken from the bottom place, as the capacity of that
arc is only 1. Subsequently, 2 tokens would be added to the
place on the right, as the weight of that arc is 2. Furthermore, in
subsequent rounds the transition would not be enabled. While
the capacity of the arcs and the threshold does not change, the
number of tokens the places have does, which means they are
now incapable of contributing tokens to meet the required
threshold of 2. The result of the firing can be seen in the
bottom diagram. Since the top originating place had 2 tokens
and its associated arc had a capacity of 2, 2 tokens were
removed from the place. Since the bottom originating place
had 2 tokens, but the associated arc only had a capacity of 1,
only one token was removed, leaving one token remaining. The
weight associated with the arc connecting from the transition to
the destination place is 2. Therefore, upon firing 2 tokens are
placed in the destination place as shown in the bottom figure.

B. Formal Definitions for Colored Petri Nets

Bulleted below is a formal definition of Colored Petri Net.

• A Colored Petri net is a tuple M=(P, T, A, S, N, E, G,
I) [3]

o P is a set of places (a state with colored
tokens) [3]

o T is a set of transitions (a collection point for
activating an action) [3]

o A is a set of arcs (links places to transitions
and vice versa) [3]

o S is set of color sets defined within CPN
model [3]

o N is a node function (defines what arcs link
which places to transitions and vice versa) [3]

o E defines what the restrictions on arcs are
(capacity and weight) [3]

o G defines the values on Transitions
(activation requirements) [3]

o I is an initial state for the Petri Net [3]

C. Basic Concurrent Systems Concepts

Concurrent systems provide an advantage by using parallel
processing (i.e. multiple tasks being performed concurrently on
multiple processors/cores) to decrease computational time.
However, with those benefits come risks such as race
conditions and deadlocks.

• A Race condition occurs when a process A requires
process B to have arrive at state S before process A
arrives as state S in order to perform correctly,
however process A ends up arriving at state S before
process B arrives.

• A Deadlock occurs when process A is in state S1 and
needs access to state S2, but state S2 is locked by
process B, who needs access to state S1, which is
locked by process A.

The above conditions are difficult to reason about, detect,
and debug, because they are not guaranteed to be replicable as
they depend upon careful timing conditions which may vary
between runs and be disrupted by debugging. Therefore, in
order to avoid such conditions, a more careful analysis is
required and CPNs are can be used for this.

D. Basic WebGME Concepts

WebGME is a Meta-Modeling plugin-based web-
framework. It is used to graphically design a meta-model
(partially UML2.0 based) for an engineering domain of
interest, and then create domain specific models from the meta-
model within the same framework. It has a JavaScript and
Python plugin-based environment in which a user can write
their own plugins. The JavaScript or Python plugins for
WebGME may be written to simulate, analyze, and visualize
the domain specific models or to interpret the models into a
common exchange formats (e.g. XML) to be imported into 3rd
party tools. The designed domain-specific modeling
environments is referred to as a Design Studio. We utilized
WebGME to develop a Colored Petri Net design, simulation,
and analysis tool.

III. COLORED PETRI NETS DESIGN STUDIO

A. Design Studio

 A Design Studio provides a framework for the modeling
and analysis of an engineering domain. [4] The Colored Petri
Net Design studio provides a framework for which user can
design, simulate, and analyze a concurrent network to reason
about deadlocks and race conditions.

 First, we present the Colored Petri Net Meta-Model
specification within the framework. Second, we present a
Domain Specific Model which is created from Meta-Model
component instances. Third, we present a series of Python
plugins for simulation, analysis, and visualization.

Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box.

IV. COLORED PETRI NETS META-MODEL

A. Meta-Model Specification

Refer to Figure 2 for the Colored Petri Net Meta-Model
designed in WebGME. As seen, everything inherits from the
FCO parent. The Colored Petri Net has a one-to-many
containment relationship with the abstract Petri Object. This
provides a Colored Petri Net Instance with access to places,
transitions, and arcs.

The Colored Petri Net meta-node contains several
attributes. InitialState, IsDeterministic, Iteration, and
StateSpace are meant to act either as outputs or storage for
plugins. ColorSet, on the other hand, defines a set of colors
which may be used by Petri Objects.

Petri Objects all have one attribute, Tokens, but its meaning
changes with the type of Petri Object. For a Place, the Tokens
attribute defines how many tokens are currently present at that
Place. For a Transition, the Tokens attribute defines how many
tokens of each color are required for it to be enabled. For a
Place to Transition Arc, the Tokens attribute defines the
capacity of the Arc, i.e. how many tokens of a particular color
may be contributed by this Place and how many tokens should
be removed from the Place. For the Transition to Place Arc, the
Tokens attribute defines the weight of the Arc, i.e. how many
tokens of a particular color should be added to the Place.

If a Petri Object uses a color that is not in the color set, the
TokenSet constraint will flag a violation. Similarly, the
NoRepeats constraint will flag a violation if a Petri Object
utilizes the same color multiple times.

Figure 2: Colored Petri Net Meta-Model

V. COLORED PETRI NET DOMAIN SPECIFIC MODEL

A. Domain Specific Model

Domain specific models (DSMs) of Colored Petri Nets

may be designed using the instances of meta-model

components. The composition tab within the WebGME

framework provides a visual workspace for the creation of

such a model. Refer to Figure 3 for a DSM of a Colored Petri

Net that was assembled utilizing the composition. As

illustrated, colored tokens, thresholds, and weights have been

applied to the model. In the current state the top left place has

one blue token, the bottom left place has one red token, and

each of the other places have no tokens. The top left place has

a transition leading out and in. The threshold of the transition

leading out has one blue token and the threshold of the

transition leading in has 1 blue token and -1 red tokens. The -1

red tokens, means that the transition will be disabled if there is

a red token in the Resource place. A similar set of transitions

are related to the bottom place. The transition between the

resource and deadlock state have a threshold of 1 red token,

and one blue token. This demonstrates that the transition to a

deadlock place is enabled if both process A & process B

access the Resource at the same time.

Figure 3: Colored Petri Net DSM

B. Python Simulation Plugins

We provide several plugins by which we may simulate a
Colored Petri Net or which simplify certain usage aspects.

NextStep: This is a python plugin which, based on the
current state of the Net, picks an enabled transition at random
from the set of all enabled transitions and fires it. The model is
then updated to reflect this.

TotalRun: Given the current state of the model, this plugin
randomly picks an enabled transition to fire and records the
new state. From the new state, it then repeats this process. This
continues until there are no transitions to execute, or until a
maximum number of iterations are reached. The maximum can
be changed in the model. The final state is saved as the current
state of the model. Provided the Naked python module is
installed, then the plugin will also create an html file for a
visual trace of states.

AllPossible: Given the current state of the model, this
plugin fires every enabled transition, and saves the resulting
states. For each unique resulting state, this process is repeated.
The process continues until no new unique states are generated,
there are no transitions to fire, or a maximum number of
iterations are reached. The model is not changed, but the trace
of all states is recorded. Provided the Naked python module is
installed, then the plugin will also create an html file for a
visual trace of states.

IsDeterministic: Given the current state of the model, this
plugin acts as AllPossible. However, if at any step there is
more than one enabled transition, then the process ends early,
as the current state is not deterministic. If the process ends as a
result of number of iterations, then the model will be updated
with the information that it is deterministic so far. If it
terminates because there are no additional unique states to
consider and no new transitions which can fire, then the model
is updated with the information that it is deterministic.

SetInitialState: The model records the current state for
future use.

Reset: The model sets the current state to the initial state,
which would have been set by SetInitialState.

C. Visualization

For visualizing and constructing CPNs, we utilize
WebGME’s built in composition tool along with its
customizable SVG Decorator. As WebGME can use ejs,
Embedded JavaScript, we were able to relatively easily define
dynamic elements which change their appearance based on
certain attributes. In this case, the change is reflected by
additional colored text appearing with the relevant object.

In addition to this, as was mentioned above, two of our
plugins provide ‘trace’ artifacts. In order for this functionality
to fully work, the Naked module for Python is required. If it is
present, the plugin will execute a node script and compile some
ejs into an HTML file. If the module is not available, the
plugin will instead return an ejs file which can be compiled
into the HTML file. The trace provides a minimalistic
representation of states, which hopefully allows for a fast
visual comparison of consecutive states.

D. Example

Figure three show an illustration of a Colored Petri Net
DSM designed within the Colored Petri Net Design Studio.
This model consists of two processes; A and B. Both process A
and process B need access to a shared resource during
execution. If during and execution of the Petri net, both process
A and process B access the shared resource at the same time
the program will enter a deadlock state.

In order to reason about this concurrent system we utilize
the Python plugins describe above. We first run the
SetInitialState plugin so a record of the token values for the
current state are stored in InitialState attribute of the network
node. Next we test if the current state is deterministic by
running the IsDeterministic plugin. Refer to Figure 4 for the
result. As illustrated the results populates the IsDeterministic

attribute field with a value of False, because in the current sate
both process A and process B are enabled.

Figure 4: Result of IsDeterminstic Plugin

We then run the NextStep plugin to see which process ends up
firing in this non-deterministic state. Refer to Figure 5 for the
result. As illustrated process B fired causing one red token to
be removed from process B and one red token to be placed in
the Resource.

Figure 5: Result of NextStep plugin.

We run IsDeterministic again to test whether the system is
deterministic from this point. Refer to figure 5 for the result.
As illustrated the results populates the IsDeterministic attribute
field with a value of False, because in the current sate both
process A and the Resource are enabled.

Figure 5: Result of Second IsDeterministic Plugin

We then run the NextStep plugin to see which process ends up
firing in this non-deterministic state. Refer to figure 5 for the
result. As illustrated the Resource fired, causing one red token
to be removed from the Resource, and one red token to be
placed in process B. In this case because process A did not fire,
the simulation returned to the intial state and no dealock will
occur.

Figure 6: Result of NexStep plugin.

In order to demonstrated the deadlock state being reached we
run the TotalRun plugin which runs for the 15 iterations that
are specified in the attribute field. Refer to Figure 7 for the
results. As illustrated, the Deadlock state was reached, which
indicates that some time during the 15 iterations the Resource
was accessed by both process A and process B during the same
state.

Figure 7: Reults of the TotalRun plugin.

From this state we run the IsDeterministic plugin. Refer to
Figure 8 for the result. As illustrated, the results of the
IsDeterministic attribute field is populated with a value of
True, because in the deadlock state there is no enabled
transition.

Figure 8: Result of the IsDeterministic Plugin

We can reason about the entire reachabled statespace at a given
state by running the AllPossible plugin. First, we run the reset
plugin to return to our initial state of as shown in Figure 3.

Then we run the AllPossible plugin. Refer to Figure 9 for the
results of the run. As illustrated, the results show all reachable
states from the initial state.

 Figure 9: Results of the AllPossible Plugin

VI. RESULTS

We presented a Design Studio for Colored Petri Nets build
on the WebGME framework. We described the Meta-Model
for Colored Petri Nets as well as a Domain Specific Model
example built from the Meta-Model component instances. We
demonstrated the Colored Petri Net plugins that are used to
simulate, analyze, and visualize the Colored Petri Net models
to reason about concurrent systems.

ACKNOWLEDGMENT

We would like to acknowledge T. Kecskes our project
sponsor for his imparted knowledge, guidance, lectures on
WebGME, and help with development problems. We would
like to acknowledge J. Sztipanovits for his class lectures on
Meta-Modeling and building sematic domains. We would like
to acknowledge P. Meijer for his lectures on WebGME.

[1] techfak.uni, ‘Petri Nets’, 2018. [Online]. Available:

https://www.techfak.uni-
bielefeld.de/~mchen/BioPNML/Intro/pnfaq.html. [Accessed: 13-Dec-
2018].

[2] en.wikipedia.org, ‘Petri Net’, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Petri_net. [Accessed: 13-Dec- 2018].

[3] 30th International Conference, PETRI NETS 2009. Paris, France:
Springer, 2009.

[4] brightspace.vanderbilt.edu, ‘Design Studios’, 2018. [Online]. Not
Publically Available:
https://brightspace.vanderbilt.edu/d2l/le/content/85901/viewContent/867
810/View [Accessed: 13-Dec- 2018].

https://www.techfak.uni-bielefeld.de/~mchen/BioPNML/Intro/pnfaq.html
https://www.techfak.uni-bielefeld.de/~mchen/BioPNML/Intro/pnfaq.html
https://en.wikipedia.org/wiki/Petri_net
https://brightspace.vanderbilt.edu/d2l/le/content/85901/viewContent/867810/View
https://brightspace.vanderbilt.edu/d2l/le/content/85901/viewContent/867810/View

