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A common problem in autonomous route planning and control 

is to implement efficient motor control, sensor feedback, and route 

planning algorithms to allow a robot to successfully navigate and 

traverse a line grid maze from a start point to a different destination 

point in an efficient manner. We present an E-Puck controller that 

utilized ground sensor feedback to perform a variety of functions; 

detect nodes (cross-sections), detect lines just past nodes, provide 

Braitenberg line tracking functionality, and allow for left and right 

turns on a line grid. In addition, we present an A Star algorithm 

that is utilized to efficiently solve for a route from a start node to an 

end node in a line grid maze. Finally, we present tuned parameters 

for node detection, line just passed node detection, line following, 

turning logic, and ground sensor threshold parameters resulting in 

a stable system.  
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I. INTRODUCTION 

a. Autonomous route planning and control is a complex 
field. The need to find algorithms for efficient motor control, 
sensor feedback, and route planning is prevalent. We present 
an approach to allow an e-puck robot to successfully navigate 
and traverse a line grid maze from a start point to a different 
destination point in an efficient manner.  

II. BASICS 

A. E-Puck 1.0 

 The E-Puck robot is a small, lightweight, ground-based 
differential wheel robot that is equipped with 3 Infrared (IR) 
ground sensors, 8 IR distance sensors, wheel encoders, a front 
facing camera, and Bluetooth 2.0. [4] See figure 1 for a picture 
of e-puck 1.0 

 

 

Figure 1: E-Puck 1.0 [4] 

B. Webots Software 

Webots is a simulation software, developed by Cyberbotics 
Ltd, used for the development simulation and control of virtual 
robots that performing tasks in a virtual environment. [1] Refer 
to Figure 2 for a screen shot of the Webots Software. 

 

Figure 2: Webots Software [1] 

C. Differencial Wheel Robots 

 Differential wheel robots are two-wheel robots that are 
holonomic (meaning able to rotate without moving forward). 
The E-Puck is a differential wheel robot that is able to 
maneuver forward backward and turn in a holonomic and non-
holonomic fashion.   

D. Ground Sensor Feedback 

 When tracking lines on a line grid three IR sensor are 
needed; a left sensor, center sensor, and a right sensor. These 
three sensors help to disambiguate where the line is at any 
given point in time. The E-Puck is equipped with a ground 
sensor extension pack. The sensor extension back comes with 
the IR sensors that are aligned horizontally to the front of the 
robot. Refer to Figure 3 for a picture of the ground IR sensors. 

 

Figure 3: Ground Sensor Extension Pack 

E. A Star Algorithm 

 The A Star algorithm is an algorithm that uses a cost 
heuristic function to rapidly determine a reasonable route to a 
destination given multiple paths. In the case of a line grid maze 



the this allows a route from one node (cross-section) to another 
node to be found and traversed in an efficient manner. 

III. OBJECTIVES 

A. E-Puck Feedback Control Objectives 

The proposed approach was to write a C code controller 

that allowed an E-Puck robot to navigate through a series of 

node-line-node traversals on a line grid (e.g. 12x12). An 

indexed list the objectives for the E-Puck controller are listed 

below: 

1. Create a control algorithm for the E-Puck that utilizes 

IR ground sensor feedback of the to follow a straight-

line path. 

2. Create a control algorithm for the E-Puck that 

utilized ground sensor feedback to detect when the 

robot has reached a node. 

3. Create a control algorithm for the E-Puck that 

utilized ground sensor feedback to for turning right, 

proceeding forward, or turning left at a node. 

4. Create an algorithm that utilizes the previous 

objectives to navigate a supplied series of line-to-

node traversals on a line grid (e.g. 12x12).  

 

B. A Star Algorithm Objectives 

The proposed approach was to write an A Star algorithm in 

C code that allowed an E-Puck robot to navigate line grid 

maze utilizing the commands provided by Objectives Part A. 

An indexed list of objectives for the A Star algorithm are 

listed below. 

1. Create an A Star Search Algorithm to solve a grid 

maze and return a set of direction from the start node 

to the end node.  

2. Create an control flow logic to convert the A Star 

directions into robot commands developed in 

Objective A.4.  

IV. PROPOSED APPROACH 

A. Task List 

Refer to Figure 4 for an indexed list of tasks for the proposed 

approach. 

 

# Tasks 

1 4.1 Initialize Github repository. 
4.2 Learn Webots E-Puck software suite. 
      4.2.1 Learn what it is capable of, and how to navigate it. 
4.3 Explore undergraduate lab. 
4.4 Learn how to build your own project, environment, floor texture, and controller. 
      4.4.1 Learn how to build your own project directory. 
      4.4.2 Learn how to build your own controller. 
      4.4.3 Calculation pixel-to-real world conversions and build virtual textures. 
      4.4.4 Lean how export you code to the real E-Puck. 
4.5 Learn the Webots E-Puck controller API. 
       4.5.1 Find E-Puck code Application Platform Interface functions 

2 2.1 Build the physical track. 
       2.1.1 Find appropriate size wood for track size. 
       2.1.2 Purchase appropriate size tape. 
       2.1.3 Assemble environment. 
2.2 Purchase additional ground sensor pack. 
       2.2.1 Find proper sensors pack, and proper vendor. 
2.3 Build the virtual simulation world environment.  
       2.3.1 Build a multiple floor textures in 3D paint. 
                 2.3.1.1 Build black track on white texture (sensory friendly version). 
                 2.3.1.1 Build black track on tan texture (close to real world version). 
       2.3.2 Build virtual world and position E-Puck appropriately with proper orientation. 
2.4 Develop line following C code commands for traversing from one node to another, node 
detection, and handling turns virtually in simulation. 
        2.4.1 Create new controller for the E-Puck and run the software.  
2.5 Update the code for the real environment. 
        2.5.1 Adjust parameters as necessary. 

3 4.1 Implement A* Search Algorithm in C code for path planning. 

4 4.1 Test for a successful implementation of A* Search Algorithm for E-Puck in virtual in 
simulation environment. 
4.2 Test for a successful implementation of A* Search Algorithm for E-Puck in real 
environment. 
4.3 Implement a random stop and go protocol that can be turned on or off during traversal. 
This protocol will allow any robot that is following the E-Puck to be tested. 

5 5.1 Error testing. 
       5.1 Code revisions. 
       5.2 Identify edge cases. 
       5.3 Understand virtual-to-real world tolerances and parameter tunings. 

6 Final test with a video. 

7 Report write-up, undergraduate lab write-up, conclude project. 

 
 

Figure 4: Proposed Approach Take List 

B. Gantt Chart 

The proposed schedule of tasks for the project was 

captures in a Gantt chart. Refer to Figure 5 for an a Gannt 

Chart of the project schedule. 

 
 

Figure 5: Gantt Chart 

 

V. DESCRIPTION OF CONTROL SYSTEM 

A. Simulation  Environement 

The simulation environment was designing to mirror the 

real environment. A 12 by 12 line grid texture was created 

utilizing Paint3D. It was designed using pixel calculations to 

convert the real environment into a mirroring virtual image 

that could be imported into the Webots software.  Refer to 

Figure 6 for the designed virtual texture.  



 

 
 

Figure 6: Virtual Texture 

 

The Webots simulation environment comes with a 

virtual E-Puck module. Importing the Virtual texture into this 

environment and placing the E-Puck at the appropriate 

position and orientation provides a complete simulation 

environment in which the controller logic can be tested. Refer 

to Figure 7 for the virtual simulation environment. As 

illustrated the virtual simulation environment functions as an 

integrated development environment (IDE) that allows for the 

development of a visual simulation environment (shown in the 

middle of the image in Figure 7), as well as a C code 

controller for the E-Puck (shown on the right of the image in 

Figure 7). The C code can be compiler and run with the 

simulation environment. On the left of the image shown in 

Figure 7, the Tab labeled simulation may be switched to a 

Bluetooth COM port, to instead run the controller on the real 

E-Puck. 

 

 
 

Figure 7: Webots Virtual Simulation Environment 

  

B. Physical  Enviroment 

The physical environment is a mirror of the virtual 

environment. It consists of a large wooden board 

(approximately 4 ft by 4 ft) with a smooth surface. Double 

strips of 3/8 inch black painters tape, was used to develop 6/8 

inch lines for the grid. Refer to Figure 8 for a picture of the 

physical environment. 

 
 

Figure 8: Physical Environment 

 

The Physical environment was give extra tape on the edges of 

the nodes, so that the robot can detect a line just past a node 

on the edge of the board and perform a turn appropriately. 

 

C. Line Following Logic 

 The line following logic is a simple Braitenberg algorithm. 
It takes the difference between the left IR ground sensor value 
and the right IR ground sensor value, multiplies the difference 
by a gain factor (between 0 and 1), then subtracts the values 
form a standard speed fixed-speed, and then assigns the speed 
it to a specific wheel. It then adds the difference value to the 
fixed-speed and assigns that value it to the other wheel. This 
ensures that if the robot begins to veer off in one direction, it 
will always correct itself to the other direction. The end 
behavior results in a sweeping motion of the robot. The 
Braitenberg wheel speed line tracking algorithm is bulleted 
below. 

• LeftWheelSpeed = Standard_Speed-
Gain*(LeftSensorValue-RightSensorValue) 

• RightWheelSpeed = 
Standard_Speed+Gain*(LeftSensorValue-
RightSensorValue 

D. Node Detection Logic 

 The node detection logic is based off threshold values for 
the IR sensors readings. The values differ between the 
simulated board the and physical board. Because the tape on 
the board is black, and black tends to absorb light, the IR 
sensor reads a lower value for the black tape, than for the 
brown board. For each of the three IR ground sensors, if a 
sensor reads a value below the line threshold, then it 
determines that it is over a line. If a sensor reads a value above 
the board threshold, then it determines that it is over the board. 
In general, it is best to overestimate being on the board, and 
underestimate being on the line. Because the lines are only 6/8-
inch thick, only two sensor values will ever be on the line at 
one time unless the robot has reached a node. Therefore, if 
three sensors values detect a line, the robot determines that it is 
at a node. When the robot first detects a node, it checks a few 
sensor consecutive sensor readings just to be sure that it has 
reached a node. This helps deconflict sensor readings as it 
drives onto a node.  Once the robot has determined that it is on 



a node, it will drive straight until it detects the line passed the 
node. In order for this to work, it sets a flag that waits to be 
flipped until it detects that it has passed the node.  

E. Line Just Passed Node Detection Logic 

 It is import for the robot to know when it has just passed a 
node and returned onto a line. When the all three sensor values 
no longer simultaneously detect a node, the robot determines 
that it is back on a line, flips the flag, and reinitiates the 
Braitenberg line tracking algorithm. 

F. Turning Logic 

 If the robot needs to make a turn, it waits until it is just 
passed a node, then it re-initiatiates the Braitenberg line 
tracking algorithm for a brief moment to move the robot away 
from the node and deconflict sensors readings during a turn. It 
then locks itself into a turning mode for a period of time while 
it turns, and its wheel speeds are set to fixed turning constants 
depending on the direction. The turn is nearly holonomic but 
not completely. While the robot is locked for turning it will 
ignore all sensor readings. This helps to deconflict the line it 
started on from the line it will end on. After a period of time (in 
the middle of the turn) the robot will unlock itself and respond 
to sensor values. At this point, as soon as the ground sensors 
values detect a new line it, the robot re-initiates the Braitenberg 
line tracking algorithm.   

G. High-Level Command Logic 

In order for the user to avoid dealing with the low-level 

complex logic of line tracking, node detection, and turns, a 

wrapper function was created to accept high level the 

commands. The wrapper function is named drive, and requires 

two arguments values to be passed into it; the number of 

nodes to traverse, and direction to traverse them in. The set of 

possible directions are left, right and straight; and the number 

of nodes up to the user. This allows a user to type a command 

such as drive(5, left), and the E-Puck will go to the next node, 

perform a left turn, and drive 5 nodes from there.    

H. A Star Algorithm Logic 

 The A Star algorithm is implemented using a form a push 
pop stack que. A multi-dimensional array at the top of the file 
allows the user to visually specify a maze of nodes, where 1’s 
represent paths that the robot may drive, and 0’s represent 
walls. Refer to Figure 9 for an illustration. 

 

 

Figure 9: Virtual Grid Maze Design 

This multi-dimensional array is then parsed into a set of arrays 
that function as a graph, connecting possible directions that the 
robot may travel at any given node. This information is then 
fed to A Star algorithm which implements a push pop stack que 
with a heuristic cost function in order to find a solution to the 
maze in a reasonable amount of time and calculate the cost. 
The Heuristic for this A Star algorithm is provided below. 

• | NeighborNodeX - GoalNodeX | + | NeighborNodeY 
– GoalNodeY | 

Once the A Star algorithm has found path to the goal node it 
ceases execution. 

I. Extracting A Star Solution Recusively 

 The A Star algorithm provides the first reference key to the 
first direction solution in the que upon completion. Each 
direction in the queue contains the previous key of the previous 
direction. These reference keys are used with a recursive 
algorithm to extract the path from the goal node back to the 
start node of the E-Puck from the que. After extraction, the 
array containing the solution directions is backwards. 
Therefore, an algorithm is used to reverse the array so that it 
can more easily be fed into the high-level command logic of 
the controller.  

J. Converting the A Star Global Directions into E-Puck 

Local Orientation Commands 

 The A Star algorithm uses a global fixed reference frame 
for the grid (up, down, left, right). These must be converted to 
the relative orientation of the E-puck as high-level commands 
as it traverses the grid. Control flow logic was written to handle 
this issue when driving the robot. The function loops through 
the A Star solution direction array and corrects for the relative 
orientation of the E-Puck along the way. It does so by 
searching forward in the solution array for relative repeat 
commands and adjusts the direction and number of nodes to 
traverse for each line accordingly.  

K. Adding Random Pauses 

 A random pause flag was designed that, when enabled, 
causes the robot to make up to one random driving pause (for a 
random amount of time) during each straight line of nodes 



traversed. This is desirable for when other robots that track the 
E-Puck need to be tested if they maintain a proper distance.  

VI. SYSTEM PERFORMANCE 

A. Physical E-Puck Statistics 

When the E-Puck runs in the physical environment the 

results are not deterministic like they are in simulation. 

Therefore, the E-Puck was tested to analyze performance. The 

Left, Right, and Straight line logic methods were each tested 

25 times to analyze their failure rate. The test of the straight 

line was for the E-Puck to follow a straight line accoss the 

entire physical board. The test for the left and right turns were 

for a successful turn. A successful turn is where the robot 

leaves the line just passed a node and re-initiates the 

Braitenburg line tracking alorgithm on the left or right lines,  

respectively. The results of this analysis are indexed below. 

 

1. Straight Line Following Tests: 

a. Successful Rounds: 25 

b. Failed Rounds: 0 

c. Failure Rate: 0% 

d. Success Rate: 100% 

2. Left Turn Tests: 

a. Successful Rounds: 25 

b. Failed Rounds: 0 

c. Failure Rate: 0% 

d. Success Rate: 100% 

3. Right Turn Tests 

a. Successful Rounds 23 

b. Failed Rounds 2: 

c. Failure Rate: 4% 

d. Success Rate: 96%. 

 

The successful results from the tests perform granted 

confidence to the E-Pucks ability to traverse the grid. 

B. IR Ground Sensor Thresholds Simulation Environement 

The ground sensors IR threashold values for the 

Simulation enviroment differ from the physical environement 

and when either one was used for the other, this resuled in 

significant line tracking errors. The IR threashold values for 

the simulation envirnment were found to be most stable with 

the following. 

1. Board Detected > 700 

2. Line Detected < 600 

C. IR Ground Sensor Thresholds Physical Environement 

The IR threashold values for the physical envirnment were 

found to be most stable with the following. 

1. Board Detected > 550 

2. Line Detected < 400 

D. A Star Complex Traversal Stability 

Many errors were debugged once the A Star algorithm 

began to drive the E-Puck on complicate routes. The 

Braitenberg algorithm gain factor was scaled down to 0.3 to 

increase stability of the line tracking by decreasing the 

sweeping motion range.  A minor pause delay was initiated 

right after the robot returns onto a line off a node; and after the 

brief pause the Braitenberg line tracking algorithm initiates for 

a brief moment to move the robot away from the node to 

deconflict sensors readings during a turn. These two steps 

became an effective technique for stabilizing turns. With these 

additions the E-Puck rarely failes when traversing complex 

routes. 

VII. CONCLUSIONS 

We have presented an E-Puck Controller which utilizes 

ground sensor feedback to traverse a 12 by 12 line grid.  

Controller logic was design which utilizes the IR ground 

sensors feedback to detect nodes (cross-sections), detect lines 

just past nodes, provide Braitenberg line tracking 

functionality, and allow for left and right turns. In addition, A 

Star algorithm logic was implemented to efficiently solve for a 

route from a start node to an end node in a line grid maze. 

This route was then passed to the e-puck to allow the epuck to 

traverse the route. Error testing was perform to tune the line 

following, turning logic, and ground sensor threshold 

parameters resulting in a stable system.  
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