

E-Puck Grid Ground Feedback Control and A Star Navigation

Ronald Picard

EECE 5257 Control Systems1

Vanderbilt University

Nashville, TN, USA

ronald.s.picard@vanderbilt.edu

A common problem in autonomous route planning and control

is to implement efficient motor control, sensor feedback, and route

planning algorithms to allow a robot to successfully navigate and

traverse a line grid maze from a start point to a different destination

point in an efficient manner. We present an E-Puck controller that

utilized ground sensor feedback to perform a variety of functions;

detect nodes (cross-sections), detect lines just past nodes, provide

Braitenberg line tracking functionality, and allow for left and right

turns on a line grid. In addition, we present an A Star algorithm

that is utilized to efficiently solve for a route from a start node to an

end node in a line grid maze. Finally, we present tuned parameters

for node detection, line just passed node detection, line following,

turning logic, and ground sensor threshold parameters resulting in

a stable system.

Keywords— Human Detection, Neural Network, Classification,

Security System, Raspberry Pi, Arduino, Artificial Intelligence,

Automation

I. INTRODUCTION

a. Autonomous route planning and control is a complex
field. The need to find algorithms for efficient motor control,
sensor feedback, and route planning is prevalent. We present
an approach to allow an e-puck robot to successfully navigate
and traverse a line grid maze from a start point to a different
destination point in an efficient manner.

II. BASICS

A. E-Puck 1.0

 The E-Puck robot is a small, lightweight, ground-based
differential wheel robot that is equipped with 3 Infrared (IR)
ground sensors, 8 IR distance sensors, wheel encoders, a front
facing camera, and Bluetooth 2.0. [4] See figure 1 for a picture
of e-puck 1.0

Figure 1: E-Puck 1.0 [4]

B. Webots Software

Webots is a simulation software, developed by Cyberbotics
Ltd, used for the development simulation and control of virtual
robots that performing tasks in a virtual environment. [1] Refer
to Figure 2 for a screen shot of the Webots Software.

Figure 2: Webots Software [1]

C. Differencial Wheel Robots

 Differential wheel robots are two-wheel robots that are
holonomic (meaning able to rotate without moving forward).
The E-Puck is a differential wheel robot that is able to
maneuver forward backward and turn in a holonomic and non-
holonomic fashion.

D. Ground Sensor Feedback

 When tracking lines on a line grid three IR sensor are
needed; a left sensor, center sensor, and a right sensor. These
three sensors help to disambiguate where the line is at any
given point in time. The E-Puck is equipped with a ground
sensor extension pack. The sensor extension back comes with
the IR sensors that are aligned horizontally to the front of the
robot. Refer to Figure 3 for a picture of the ground IR sensors.

Figure 3: Ground Sensor Extension Pack

E. A Star Algorithm

 The A Star algorithm is an algorithm that uses a cost
heuristic function to rapidly determine a reasonable route to a
destination given multiple paths. In the case of a line grid maze

the this allows a route from one node (cross-section) to another
node to be found and traversed in an efficient manner.

III. OBJECTIVES

A. E-Puck Feedback Control Objectives

The proposed approach was to write a C code controller

that allowed an E-Puck robot to navigate through a series of

node-line-node traversals on a line grid (e.g. 12x12). An

indexed list the objectives for the E-Puck controller are listed

below:

1. Create a control algorithm for the E-Puck that utilizes

IR ground sensor feedback of the to follow a straight-

line path.

2. Create a control algorithm for the E-Puck that

utilized ground sensor feedback to detect when the

robot has reached a node.

3. Create a control algorithm for the E-Puck that

utilized ground sensor feedback to for turning right,

proceeding forward, or turning left at a node.

4. Create an algorithm that utilizes the previous

objectives to navigate a supplied series of line-to-

node traversals on a line grid (e.g. 12x12).

B. A Star Algorithm Objectives

The proposed approach was to write an A Star algorithm in

C code that allowed an E-Puck robot to navigate line grid

maze utilizing the commands provided by Objectives Part A.

An indexed list of objectives for the A Star algorithm are

listed below.

1. Create an A Star Search Algorithm to solve a grid

maze and return a set of direction from the start node

to the end node.

2. Create an control flow logic to convert the A Star

directions into robot commands developed in

Objective A.4.

IV. PROPOSED APPROACH

A. Task List

Refer to Figure 4 for an indexed list of tasks for the proposed

approach.

Tasks

1 4.1 Initialize Github repository.
4.2 Learn Webots E-Puck software suite.
 4.2.1 Learn what it is capable of, and how to navigate it.
4.3 Explore undergraduate lab.
4.4 Learn how to build your own project, environment, floor texture, and controller.
 4.4.1 Learn how to build your own project directory.
 4.4.2 Learn how to build your own controller.
 4.4.3 Calculation pixel-to-real world conversions and build virtual textures.
 4.4.4 Lean how export you code to the real E-Puck.
4.5 Learn the Webots E-Puck controller API.
 4.5.1 Find E-Puck code Application Platform Interface functions

2 2.1 Build the physical track.
 2.1.1 Find appropriate size wood for track size.
 2.1.2 Purchase appropriate size tape.
 2.1.3 Assemble environment.
2.2 Purchase additional ground sensor pack.
 2.2.1 Find proper sensors pack, and proper vendor.
2.3 Build the virtual simulation world environment.
 2.3.1 Build a multiple floor textures in 3D paint.
 2.3.1.1 Build black track on white texture (sensory friendly version).
 2.3.1.1 Build black track on tan texture (close to real world version).
 2.3.2 Build virtual world and position E-Puck appropriately with proper orientation.
2.4 Develop line following C code commands for traversing from one node to another, node
detection, and handling turns virtually in simulation.
 2.4.1 Create new controller for the E-Puck and run the software.
2.5 Update the code for the real environment.
 2.5.1 Adjust parameters as necessary.

3 4.1 Implement A* Search Algorithm in C code for path planning.

4 4.1 Test for a successful implementation of A* Search Algorithm for E-Puck in virtual in
simulation environment.
4.2 Test for a successful implementation of A* Search Algorithm for E-Puck in real
environment.
4.3 Implement a random stop and go protocol that can be turned on or off during traversal.
This protocol will allow any robot that is following the E-Puck to be tested.

5 5.1 Error testing.
 5.1 Code revisions.
 5.2 Identify edge cases.
 5.3 Understand virtual-to-real world tolerances and parameter tunings.

6 Final test with a video.

7 Report write-up, undergraduate lab write-up, conclude project.

Figure 4: Proposed Approach Take List

B. Gantt Chart

The proposed schedule of tasks for the project was

captures in a Gantt chart. Refer to Figure 5 for an a Gannt

Chart of the project schedule.

Figure 5: Gantt Chart

V. DESCRIPTION OF CONTROL SYSTEM

A. Simulation Environement

The simulation environment was designing to mirror the

real environment. A 12 by 12 line grid texture was created

utilizing Paint3D. It was designed using pixel calculations to

convert the real environment into a mirroring virtual image

that could be imported into the Webots software. Refer to

Figure 6 for the designed virtual texture.

Figure 6: Virtual Texture

The Webots simulation environment comes with a

virtual E-Puck module. Importing the Virtual texture into this

environment and placing the E-Puck at the appropriate

position and orientation provides a complete simulation

environment in which the controller logic can be tested. Refer

to Figure 7 for the virtual simulation environment. As

illustrated the virtual simulation environment functions as an

integrated development environment (IDE) that allows for the

development of a visual simulation environment (shown in the

middle of the image in Figure 7), as well as a C code

controller for the E-Puck (shown on the right of the image in

Figure 7). The C code can be compiler and run with the

simulation environment. On the left of the image shown in

Figure 7, the Tab labeled simulation may be switched to a

Bluetooth COM port, to instead run the controller on the real

E-Puck.

Figure 7: Webots Virtual Simulation Environment

B. Physical Enviroment

The physical environment is a mirror of the virtual

environment. It consists of a large wooden board

(approximately 4 ft by 4 ft) with a smooth surface. Double

strips of 3/8 inch black painters tape, was used to develop 6/8

inch lines for the grid. Refer to Figure 8 for a picture of the

physical environment.

Figure 8: Physical Environment

The Physical environment was give extra tape on the edges of

the nodes, so that the robot can detect a line just past a node

on the edge of the board and perform a turn appropriately.

C. Line Following Logic

 The line following logic is a simple Braitenberg algorithm.
It takes the difference between the left IR ground sensor value
and the right IR ground sensor value, multiplies the difference
by a gain factor (between 0 and 1), then subtracts the values
form a standard speed fixed-speed, and then assigns the speed
it to a specific wheel. It then adds the difference value to the
fixed-speed and assigns that value it to the other wheel. This
ensures that if the robot begins to veer off in one direction, it
will always correct itself to the other direction. The end
behavior results in a sweeping motion of the robot. The
Braitenberg wheel speed line tracking algorithm is bulleted
below.

• LeftWheelSpeed = Standard_Speed-
Gain*(LeftSensorValue-RightSensorValue)

• RightWheelSpeed =
Standard_Speed+Gain*(LeftSensorValue-
RightSensorValue

D. Node Detection Logic

 The node detection logic is based off threshold values for
the IR sensors readings. The values differ between the
simulated board the and physical board. Because the tape on
the board is black, and black tends to absorb light, the IR
sensor reads a lower value for the black tape, than for the
brown board. For each of the three IR ground sensors, if a
sensor reads a value below the line threshold, then it
determines that it is over a line. If a sensor reads a value above
the board threshold, then it determines that it is over the board.
In general, it is best to overestimate being on the board, and
underestimate being on the line. Because the lines are only 6/8-
inch thick, only two sensor values will ever be on the line at
one time unless the robot has reached a node. Therefore, if
three sensors values detect a line, the robot determines that it is
at a node. When the robot first detects a node, it checks a few
sensor consecutive sensor readings just to be sure that it has
reached a node. This helps deconflict sensor readings as it
drives onto a node. Once the robot has determined that it is on

a node, it will drive straight until it detects the line passed the
node. In order for this to work, it sets a flag that waits to be
flipped until it detects that it has passed the node.

E. Line Just Passed Node Detection Logic

 It is import for the robot to know when it has just passed a
node and returned onto a line. When the all three sensor values
no longer simultaneously detect a node, the robot determines
that it is back on a line, flips the flag, and reinitiates the
Braitenberg line tracking algorithm.

F. Turning Logic

 If the robot needs to make a turn, it waits until it is just
passed a node, then it re-initiatiates the Braitenberg line
tracking algorithm for a brief moment to move the robot away
from the node and deconflict sensors readings during a turn. It
then locks itself into a turning mode for a period of time while
it turns, and its wheel speeds are set to fixed turning constants
depending on the direction. The turn is nearly holonomic but
not completely. While the robot is locked for turning it will
ignore all sensor readings. This helps to deconflict the line it
started on from the line it will end on. After a period of time (in
the middle of the turn) the robot will unlock itself and respond
to sensor values. At this point, as soon as the ground sensors
values detect a new line it, the robot re-initiates the Braitenberg
line tracking algorithm.

G. High-Level Command Logic

In order for the user to avoid dealing with the low-level

complex logic of line tracking, node detection, and turns, a

wrapper function was created to accept high level the

commands. The wrapper function is named drive, and requires

two arguments values to be passed into it; the number of

nodes to traverse, and direction to traverse them in. The set of

possible directions are left, right and straight; and the number

of nodes up to the user. This allows a user to type a command

such as drive(5, left), and the E-Puck will go to the next node,

perform a left turn, and drive 5 nodes from there.

H. A Star Algorithm Logic

 The A Star algorithm is implemented using a form a push
pop stack que. A multi-dimensional array at the top of the file
allows the user to visually specify a maze of nodes, where 1’s
represent paths that the robot may drive, and 0’s represent
walls. Refer to Figure 9 for an illustration.

Figure 9: Virtual Grid Maze Design

This multi-dimensional array is then parsed into a set of arrays
that function as a graph, connecting possible directions that the
robot may travel at any given node. This information is then
fed to A Star algorithm which implements a push pop stack que
with a heuristic cost function in order to find a solution to the
maze in a reasonable amount of time and calculate the cost.
The Heuristic for this A Star algorithm is provided below.

• | NeighborNodeX - GoalNodeX | + | NeighborNodeY
– GoalNodeY |

Once the A Star algorithm has found path to the goal node it
ceases execution.

I. Extracting A Star Solution Recusively

 The A Star algorithm provides the first reference key to the
first direction solution in the que upon completion. Each
direction in the queue contains the previous key of the previous
direction. These reference keys are used with a recursive
algorithm to extract the path from the goal node back to the
start node of the E-Puck from the que. After extraction, the
array containing the solution directions is backwards.
Therefore, an algorithm is used to reverse the array so that it
can more easily be fed into the high-level command logic of
the controller.

J. Converting the A Star Global Directions into E-Puck

Local Orientation Commands

 The A Star algorithm uses a global fixed reference frame
for the grid (up, down, left, right). These must be converted to
the relative orientation of the E-puck as high-level commands
as it traverses the grid. Control flow logic was written to handle
this issue when driving the robot. The function loops through
the A Star solution direction array and corrects for the relative
orientation of the E-Puck along the way. It does so by
searching forward in the solution array for relative repeat
commands and adjusts the direction and number of nodes to
traverse for each line accordingly.

K. Adding Random Pauses

 A random pause flag was designed that, when enabled,
causes the robot to make up to one random driving pause (for a
random amount of time) during each straight line of nodes

traversed. This is desirable for when other robots that track the
E-Puck need to be tested if they maintain a proper distance.

VI. SYSTEM PERFORMANCE

A. Physical E-Puck Statistics

When the E-Puck runs in the physical environment the

results are not deterministic like they are in simulation.

Therefore, the E-Puck was tested to analyze performance. The

Left, Right, and Straight line logic methods were each tested

25 times to analyze their failure rate. The test of the straight

line was for the E-Puck to follow a straight line accoss the

entire physical board. The test for the left and right turns were

for a successful turn. A successful turn is where the robot

leaves the line just passed a node and re-initiates the

Braitenburg line tracking alorgithm on the left or right lines,

respectively. The results of this analysis are indexed below.

1. Straight Line Following Tests:

a. Successful Rounds: 25

b. Failed Rounds: 0

c. Failure Rate: 0%

d. Success Rate: 100%

2. Left Turn Tests:

a. Successful Rounds: 25

b. Failed Rounds: 0

c. Failure Rate: 0%

d. Success Rate: 100%

3. Right Turn Tests

a. Successful Rounds 23

b. Failed Rounds 2:

c. Failure Rate: 4%

d. Success Rate: 96%.

The successful results from the tests perform granted

confidence to the E-Pucks ability to traverse the grid.

B. IR Ground Sensor Thresholds Simulation Environement

The ground sensors IR threashold values for the

Simulation enviroment differ from the physical environement

and when either one was used for the other, this resuled in

significant line tracking errors. The IR threashold values for

the simulation envirnment were found to be most stable with

the following.

1. Board Detected > 700

2. Line Detected < 600

C. IR Ground Sensor Thresholds Physical Environement

The IR threashold values for the physical envirnment were

found to be most stable with the following.

1. Board Detected > 550

2. Line Detected < 400

D. A Star Complex Traversal Stability

Many errors were debugged once the A Star algorithm

began to drive the E-Puck on complicate routes. The

Braitenberg algorithm gain factor was scaled down to 0.3 to

increase stability of the line tracking by decreasing the

sweeping motion range. A minor pause delay was initiated

right after the robot returns onto a line off a node; and after the

brief pause the Braitenberg line tracking algorithm initiates for

a brief moment to move the robot away from the node to

deconflict sensors readings during a turn. These two steps

became an effective technique for stabilizing turns. With these

additions the E-Puck rarely failes when traversing complex

routes.

VII. CONCLUSIONS

We have presented an E-Puck Controller which utilizes

ground sensor feedback to traverse a 12 by 12 line grid.

Controller logic was design which utilizes the IR ground

sensors feedback to detect nodes (cross-sections), detect lines

just past nodes, provide Braitenberg line tracking

functionality, and allow for left and right turns. In addition, A

Star algorithm logic was implemented to efficiently solve for a

route from a start node to an end node in a line grid maze.

This route was then passed to the e-puck to allow the epuck to

traverse the route. Error testing was perform to tune the line

following, turning logic, and ground sensor threshold

parameters resulting in a stable system.

ACKNOWLEDGMENTS

We would like to acknowledge K. Kawamura for his project

idea, technical support, and class lectures on feedback control

systems. We would like to acknowledge T. Darrah for his

support, advice, and guidance regarding the A Star algorithm

implementation.

VIII. REFERENCES

[1] https://cyberbotics.com/#webots , ‘Why Webots’, 2018.
[Online]. Available: https://cyberbotics.com/#webots [Access: 13-Dec-
2018]

[2] http://www.e-puck.org/ , ‘e-puck education robot’, 2018. [Online].
Available: http://www.e-puck.org/ [Access: 13-Dec-2018]

[3] http://www.e-puck.org/ , ‘e-puck education robot’, 2018. [Online].
Available: http://www.e-puck.org/ [Access: 13-Dec-2018]

[4] http://www.gctronic.com/, ‘e-puck education robot’, 2018. [Online].
Available: http://www.gctronic.com/doc/index.php/E-Puck [Access: 13-
Dec-2018]

[5] https://www.mathworks.com/products/simulink.html. [Accessed: 11-
Dec- 2018].

https://cyberbotics.com/#webots
https://cyberbotics.com/#webots
http://www.e-puck.org/
http://www.e-puck.org/
http://www.e-puck.org/
http://www.e-puck.org/
http://www.gctronic.com/doc/index.php/E-Puck
https://www.mathworks.com/products/simulink.html

