
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Computer Vision Security System 

Ronald Picard  

EECE 6356  Intelligenct Systems and Robotics 

Vanderbilt University  

Nashville, TN, USA 

ronald.s.picard@vanderbilt.edu 

  

The use of security systems is becoming more prevalent in this 

modern age. With the advent of machine learning algorithms, there 

is a unique opportunity to integrate machine learning algorithms 

into modern camera-based security systems. We present an 

inexpensive, light-weight computer vision security system with an 

integrated deep neural network. The security system uses active 

image classification to detect intruders and provide a notification 

and a video to the owner over email. In addition, the system 

maintains an integrated graphical user interface controller as well 

an android application controller.  

Keywords— Computer Vision, Security System, Human 

Detection, Deep Neural Network, Raspberry Pi, Image 

Classification, Automation, Android, Java, Python, Open CV  

I. INTRODUCTION 

The 21st century has seen a rapid increase in computation 
power, enabling the advent of useful machine learning 
algorithms. The use of deep neural networks for the image 
classification has seen success in recent years and is enabling 
emerging technologies. The application of deep neural 
networks to security systems is one such use. We demonstrate 
an inexpensive, light-weight security system with an integrated 
deep neural network. This integrated system actively detects 
intrudes and provides a notification and video to the owner 
over email.   

II. BASICS 

A. Raspberry Pi 

 A Raspberry Pi is a low cost, small size Linux-based 
computer that offers a wide range of functionality. Refer to 
Figure 1 for a picture of the Raspberry Pi Model 3 B. This 
model comes equipped with a 1.2 GHZ guad-core ARM 
Cortex A53 CPU, 1 GB LPDDR2-900 SDRAM, 4 USB ports, 
10/100 MBPS Ethernet port, 802.11n Wireless LAN, Bluetooth 
4.0, HDMI Port, Composite Video and a sound connection. [] 
The operation system (OS) is installed on a micro-SD card 
which fits a slot on the side of the Raspberry Pi. The official 
operating system for the Raspberry Pi is Raspbian Jessie, 
which is a Linux-based OS. The full operating comes standard 
with a desktop interface, and is preinstalled with Python, 
Scratch, Sonic Pi, Java and more. [1] 

 

Figure 1: Raspberry Pi 3 B [2] 

B. Python 

Python is an open-source, interpreted, cross-platform, high-
level, multi-paradigm programming language. The primary 
supported paradigms include procedural, object-oriented, and 
functional. Python finds common use in automation and has 
community support for machine learning.  

C. Open CV 

Open Source Computer Vision Library (Open CV) is a 
Berkeley Software Distribution (BSD) licensed, cross-platform 
software library for computer vision. The library itself is 
written in C/C++, but it has interfaces for C++, Python, and 
Java. [3] Open CV can be compiled and run on a Raspberry Pi 
utilizing a Python interface. 

D. Deep Neural Network 

 A neural network (NN) is a type of algorithm that is 
loosely modeled after the human brain and is designed to 
recognized patterns. [4] A typical neural network contains 
multiple layers of weights that are adjusted to recognized 
desired patterns among large data sets. This makes neural 
networks useful for classifying (labeling) objects within image 
frames. Neural network algorithms come in a variety of flavors 
but can be broadly placed in two categories; unsupervised or 
supervised.  Supervised neural networks are trained with data 
that is pre-labeled. During the training process, a labeled data 
set (such as image frame matrix) is passed into the network. 
The network labels the image and compares its label with the 
true label. If it predicts the label incorrectly it will adjust the 
weights of the network to label the data (image) correctly in the 
future. A supervised neural network will appropriately label 
objects from an unlabeled data set after it has been trained. An 
unsupervised neural network is not pre-trained with labeled 
data and instead groups data into labeled clusters without a 
specific set of known labels. A neural network that is three or 
more layers deep is a deep neural network (DNN). Refer to 

Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box. 



Figure 2 for an illustration of a simple neural network and a 
deep neural network.  

 

Figure 2: [5] 

E. Caffe 

Caffe is an open source machine learning framework 
developed by Berkeley AI Research under a BSD license. It 
allows for the development of deep neural networks. Caffe 
DNN models may be used by Python scripts utilizing Open 
CV. [6] 

F. Android Studio 

Android is mobile operation system (developed by Google) 
that is commonly used in smart phones and tablets. [7] Android 
studio is used for the development of Android applications that 
can been installed on Android devices. [8] 

G. Java 

Java is a compiled (or just-in-time (JIT) compiled) cross-
platform, high-level, multi-paradigm programming language. 
The primary supported paradigms include procedural, object-
oriented, and functional. Java is the primary language used to 
build Android applications with Android studio.  

H. Nework Sockets 

A network sockets is a local endpoint with a node on a 
computer network. A network socket is primarily used for 
communication between two nodes within a network.  A host 
node will bind to its IP address and listen on a specific port 
number. A client node will connect to the host node utilizing 
the host node’s IP address and the port that the host node is 
listening on. After a connection is established data transmitted 
back and forth between the two nodes. [9] 

III. SECUIRTY SYSTEM REQUIREMENTS 

A. Hardware Requirements Secuirty System 

 An index list of hardware requirements for this computer 
vision security system are provided below. 

1. Raspberry Pi 3 B Motherboard 

2. 16 GB MicroSD Card (Speed 10) 

3. Raspberry Pi Camera 

4. Raspberry Pi 7" Touchscreen Display 

5. Raspberry Pi Fan, iUniker Raspberry Pi Heatsink Fan 
Dual Fan and RAM Copper Heatsink for Raspberry Pi 
3 Model B, Raspberry Pi 2 Model B 

6. Official Raspberry Pi Foundation 5V 2.5A Power 
Supply 

7. Raspberry Pi 7” Touch Screen Compatible Case with a 
Camera Holder 

8. Android Device Running Android 4.0.3 + 

B. Software Requirements 

 An index list of software requirements for this computer 
vision security system are provided below. 

1. Python 2.7 +  

a. Python Libraries: imutils, numpy, time, cv2, 
smpt, pytz, datetime, tzlocal, Tkinter, 
tkMessageBox, threading, socket, sys 

2. OpenCV 3 +  

3. Caffe Deep Neural Network [10] 

4. Android Studio 

5. Android OS 

6. Raspbian Jesse OS 

7. Etcher 

IV. COMPUTER VISION SECURITY SYTEM DETAILS 

A. Securty System Hardward Contruction 

The physical hardware system is made up of the 

components listed that are Section III A. Refer to Figures 3 

and 4 for pictures of the physical system. As seen in Figure 3, 

the camera is mounted sideways to the top of the display case 

requiring an image rotation (see section D for details). The 

touch screen allows the user to interact with the graphical user 

interface of both the Raspberry Pi and the local security 

system controller. As seen in Figure 4, the case angle is 

adjustable which allows the camera angle to be adjusted. The 

Raspberry Pi is mounted onto the back of the case, and the 

cooling fan is mounted to the back of the Raspberry Pi. The 

heat sink is on the other side of the Raspberry Pi against the 

processor and is not visible from Figure 4.  

 

 
Figure 3: Front of Physical System 

 

Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box. Identify applicable funding agency here. If none, delete this text box. 



 
Figure 4: Back of Physical System 

B. Raspberry Pi Graphical User Interface Details 

The graphical user interface for the Raspberry Pi consists 

of a single Tkinter button. When the primary script is initiated 

the button appears with which the user interacts with the 

program. By default, the security system is turned off and the 

text of the button reads “OFF”.  When a user presses the 

button, the text of the button is changed to “ON” and the 

security system is turned on. If the button is pressed again, the 

button text changes to “OFF” and the security system is turned 

back off. Refer to Figures 5 and 6 for pictures of the touch 

screen graphical user interface. 

 

 
Figure 5: GUI Controller OFF State  

 

 
Figure 6: GUI Controller ON State 

 

When the system is turned on it continuously 

monitors the video feed to detect humans. If a human is 

detected, a video clip is recorded, processed, saved, and 

emailed corresponding recipient with a local time zone time 

stamp and notification. Refer to Figure 7 for an email 

notification example.  

 

 
Figure 7: Security Alert Email 

 

C. Android Application Graphical User Interface Details 

 The graphical user interface for the Android app contains 
one button. When the app is started the button text displays 
“Button” because it does not know the current state of the 
security system. The security system may be turned on or off 
when the button is press. The button text will change to on or 
off depending on the state of the security system after the 
button is pressed. If the system was off when the button was 
pressed, the system will be turned on and the button text will 
change to “ON”. If the system was on when the button was 
pressed the system will be turned off and the button text will 
change to “OFF”. This provides a visual cue to the user so that 
the user knows if the system was turned on or off. Refer to 
Figures 6, 7, and 8 for pictures of the android application. 

 

Figure 6: Android Application Controller Initial State 

 



 
 

Figure 7: Android Application Controller ON State 

 

 
 

Figure 8: Android Application Controller OFF State 
 

D. Raspberry Pi Python Implementation System Details 

 We designed Python scripts to control the security system 
on the Raspberry Pi. The implementation contains the 
following features: video processing, image detection, 
graphical user interface control, sending emails, and Android 
application communication. 

 When the primary python script is initiated via the 
Raspberry Pi Linux terminal, a handful of command line 
arguments are passed in. The arguments include the path to the 
Caffe prototxt file, the pretrained Caffe DNN model (provided 
by [9]), the minimum probability threshold for detections, the 
Raspberry Pi camera, the time in seconds that the camera is to 
record a video for upon a detection, the output video path, and 
the type of detection to look for.  

 The program then initiates a graphical user interface in 
which the system may be turned on or off with the touch of a 
buttons. (see section B for more information.) 

 Once the system is turned on the command line arguments 
are arguments are parsed, and then the program transitions to 
and idle state. In the idle state the program initiates a camera 
video feed, pulls, and processes 1 frame per second through the 
DNN.  

 Pulling a frame consists of collecting a frame from the 
video feed, rotating the frame to correct for the sideways 
camera orientation on the physical system, and resizing it to a 
square matrix. 

 Processing a frame consists of converting the frame to a 
cv2 DNN blob and passing it through the DNN to find 
detections. After all the detections are found, they are looped 
through to remove detections below the confidence threshold. 
A square body is then drawn around the detected human in the 
frame with a label and a confidence value. Refer to Figure 8 for 
an example of a processed frame.  

 

Figure 8: Processed Video Frame 

 It remains in an idle state until a human is detected. Once a 
human is detected the program transitions to a run state in 
which it collects frames at a rate of 0.05 seconds until the 
required clip time has passed. After all the frames have been 
collected it begins to process and store them one by one at an 
approximate rate of 1 frame per 1.5 second seconds.  

 After the all frames from the clip have been processed they 
are stored in a frame array. From here a proper video writer 
codec is specified and the frames are written to an AVI video 
using a cv2.VideoWrite function.  

 After the video has been written, a SMPT message is 
construction and emailed to the recipient’s email address with a 
local time zone time-stamp.  

 At the beginning of the script a thread is spawned to set up 
a localhost socket and listen for a TCP request from the 
Android application. If the android application pings it, it will 
flip a global switch state and the idle process will either be 
instantiated or terminated depending on its current state as well 
as the current state of the touch screen GUI. After this, the 



thread spawns a separate thread acknowledging the command 
from the android application.  

E. Android Application Implementation Details 

 We utilized Java to design the android application 
controller for turning on and off the computer vision security 
system. When the button is pressed, it connects to the 
Raspberry Pi TCP socket by a specified port and IP address on 
the local network. The application then opens a 
DataOutputStream and sends out a message to the Raspberry 
Pi. After this, the program flushes, then closes the 
DataOutputStream, then closes the socket. Following, this the 
programming immediately opens its own localhost socket and 
waits for an acknowledgement response from the Raspberry Pi. 
The acknowledgement response that is received from the 
Raspberry Pi consists of a string that reads either “ON” or 
“OFF”. This string is used to update the text of the button on 
the Android app as a visual que to the user.   

V. TEST RESULT DETAILS 

A. Processing Speed and Thermal Conditions 

 The processing of the system was testing on 20 second 
video clips (400 frames). The maximum speed with which the 
DNN on the Raspberry Pi can process a frame is approximately 
1.0 second. This is the ideal case, so that the video clip may be 
sent as soon as possible. However, allowing the Raspberry Pi 
to do so with no time delays to cool the processor, causes the 
processor to maintain above 90% usage, which results in an 
overheated system that crashes Raspberry Pi (requiring a 
restart). There are two solutions to this problem. Solution 1 is 
to add a time delay after each frame is processed to allow time 
for the processor to cool down. Solution 2 is to add a heatsink 
and a fan component to the outside of the Raspberry Pi around 
the processor. Both solutions were tested. The optimal time 
delay for option 1 was found to be 0.5 seconds. This resulted in 
enough time for the processor to drop from 80% usage to 
approximately 60% usage before processing the next frame 
allowing the processor to cool. This allows a 20 second frames 
to be processed in approximately 10 minutes. This solution 
resulted in a relatively stable system, with the tradeoff of an 
additional 0.5 second time delay. However, even at this rate 
there is still a risk of the processor overheating and the 
Raspberry Pi crashing. Solution 2 did not totally remove the 
need for a time delay. The processor maintained 80%-90% 
usage, however there still is a risk of a crash due to 
overheating. Additionally, though the oscillation between 80% 
and 90% process usage may have been acceptable in clips with 
few frames, it is more desirable to for the health of the system 
to have a process usage drop in between frames.  Therefore, 
both the time delay of 0.5 seconds and the heatsink and fan 
cooling unit are implemented into the final system. This results 
in a processor usage dropping from approximately 80% down 
to approximately 40% in between frames. This is a moderate 
balance between minimizing risk of a crash and maximizing 
the processor speed. 

B. Active Reaction Speed 

 The Thermal conditions limit speed at which system may 
detect a human. If the human remains in the camera view for 
more than 1.5 seconds, then they will be detected. However, if 
the human does not remain in the camera view for 1.5 seconds, 
then there is no guarantee that the system will detect them, 
since it may be processing a frame during that time.  

C. Frames Per Second (FPS) 

 After the system detects a human it begins to capture a 
video clip. If the frame collection rate is high, then the 
resulting video is very smooth. If the frame collection rate is 
lower, then the resulting video is choppy. However, there is a 
tradeoff. If the frame rate is too high, post processing will take 
longer, and video email will be delayed longer. If the frame 
rate is lower, then post processing will take less time, and the 
video email will be sent faster. The optimal frames per second 
was found to be 0.5 FPS. This rate provides a smooth video 
feed that still processes in a reasonable amount of time. 

D. Processing Speed 

 The system processes a 20 second clip in approximately 10 
minutes after the clip has been captured. This delay is due to 
the thermal limit conditions on a system as well as the desire to 
maintain a 0.5 FPS video clip. This provides a processing rate 
of 2 second clips/minute. 

E. Length Of Video Clips 

 The optimal length of a video clip was found to be 20 
seconds. At a processing rate of 2 second clips/minute, a 20 
second video provides useful information to the security 
system own, while still arriving by email in a useful amount of 
time (i.e. approximately 10 minutes).  

F. Example Use Case 

An example use case for this system is to detect intruders 

in the home while the homeowners are away. The system is 

placed in an inconspicuous location within a room with the 

camera facing the door. Refer to Figure 9 for an illustration of 

a device location.  

 

 
Figure 9: Device Location 

 



After the homeowner leaves the home, they utilize the android 

app to activate the security system. Refer to Figure 10 for an 

illustration.  

 

 
Figure 10: Activation with the Android Application 

 

When an intruder invades the home, the computer vision 

security system detects the intruder, records a video clip, 

processes the clip to track the human. Refer to Figure 10 for a 

processed frame from illustrative intruder detection video. 
 

 

Figure 10: Intruder Detection 

A time stamped security alert email message is sent to the 
homeowner after the video clip is processed. Refer to Figure 11 
for an illustrated security alert email on an Android device. 

 

 

Figure 11: Security Alert Email On Android 

After the security alert has been received, the video clip may be 
downloaded and watched directly on the android device. Refer 
to Figure 12 for an illustration. 

 

 

Figure 12: Video Clip On Android Device 

VI. RESULTS 

We have demonstrated a computer vision security system. 
The security system utilizes a pretrained deep neural network 
to perform image classification on frames allowing for active 
detection of human intruders. In addition, the system records 
and processes a video clip of an intruder and provides a 
security alert email message to the system owners with a time 
stamp and the processed clip attached. The system is equipped 
with both a local GUI controller and an Android Application 
controller. We have demonstrated a use case of this security 
system for homeowners to be warned of intruders. 

ACKNOWLEDGMENTS 

We would like to acknowledge R. A. Peters for his lectures 
on artificial intelligence and encouragement on the project. We 
would like to acknowledge A. Rosebrock for his contribution 
of a pre-trained cafe model and CV2 frame processing source 
code, from which the frame processing function was adapted. 



REFERENCES 

 
[1] hackaday.com, ‘INTRODUCING THE RASPBERRY PI 3’, 2016. 

[Online]. Available: https://hackaday.com/2016/02/28/introducing-the-
raspberry-pi-3/  [Accessed: 14-Dec- 2018]. 

[2] raspberrypi.org, ‘RASPBERRY PI 3 Model B’, 2018. [Online]. 
Available: https://www.raspberrypi.org/products/raspberry-pi-3-model-
b/ [Accessed: 14-Dec- 2018]. 

[3] opencv.org, ‘Open CV’, 2018. [Online]. Available: https://opencv.org/ 
[Accessed: 14-Dec- 2018]. 

[4] skymind.ai, ‘A Beginner's Guide to Neural Networks and Deep 
Learning’, 2018. [Online]. Available: https://skymind.ai/wiki/neural-
network [Accessed: 14-Dec- 2018]. 

[5] cacm.acm.org/, ‘Deep Learning Hunts for Signals Among the Noise’, 
2018. [Online]. Available: 

https://cacm.acm.org/magazines/2018/6/228030-deep-learning-hunts-
for-signals-among-the-noise/fulltext  [Accessed: 14-Dec- 2018]. 

[6] caffe.berkeleyvision.org, ‘Caffe’, 2018. [Online]. Available: 
http://caffe.berkeleyvision.org/ [Accessed: 14-Dec- 2018]. 

[7] android.com, ‘Android’, 2018. [Online]. Available: 
https://www.android.com/ [Accessed: 14-Dec- 2018]. 

[8] developer.android.com, ‘Android Studio’, 2018. [Online]. Available: 
https://developer.android.com/studio/  [Accessed: 14-Dec- 2018]. 

[9] docs.oracle.com, ‘What is a Socket?’, 2018. [Online]. Available: 
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.ht
ml  [Accessed: 14-Dec- 2018]. 

[10] pyimagesearch.com, ‘Raspberry Pi: Deep learning object detection with 
OpenCV’, 2017. [Online]. Available: 
https://www.pyimagesearch.com/2017/10/16/raspberry-pi-deep-
learning-object-detection-with-opencv/  [Accessed: 14-Dec- 2018]. 

 

 

https://hackaday.com/2016/02/28/introducing-the-raspberry-pi-3/
https://hackaday.com/2016/02/28/introducing-the-raspberry-pi-3/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://opencv.org/
https://skymind.ai/wiki/neural-network
https://skymind.ai/wiki/neural-network
https://cacm.acm.org/magazines/2018/6/228030-deep-learning-hunts-for-signals-among-the-noise/fulltext
https://cacm.acm.org/magazines/2018/6/228030-deep-learning-hunts-for-signals-among-the-noise/fulltext
http://caffe.berkeleyvision.org/
https://www.android.com/
https://developer.android.com/studio/
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html
https://docs.oracle.com/javase/tutorial/networking/sockets/definition.html
https://www.pyimagesearch.com/2017/10/16/raspberry-pi-deep-learning-object-detection-with-opencv/
https://www.pyimagesearch.com/2017/10/16/raspberry-pi-deep-learning-object-detection-with-opencv/

