Analysis of N-Queens Stochastic Algorithms Using
Probabilistic Model Checking

Ronald Picard, Bernard Serbinowski
Vanderbilt University
Nashville, TN, USA

Abstract—Probabilistic model checking extends model check-
ing to domains in which actions will be taken based on a certain
probability. This aligns nicely with modeling many real world
systems in which actions are taken in a stochastic manner.
Unfortunately, probabilistic model checking further complicates
the already high computational complexity challenges associated
deterministic model checking. N-Queens is a commonly studied
computer science and mathematics problem. There are many
algorithms that solve this problem under different constraints.
Some algorithms are iterative and deterministic, while other
algorithms are stochastic in nature. In this paper we present
a probabilistic model checking approach to check a fundamental
property of these algorithms; namely, there ability find a solution
within a given number of transitions (iterations). This number is
not fixed, but rather a probability of successful completion within
some number of transitions. We utilize PRISM, a probabilistic
model checker, to model these algorithms and find the probability
that this property is satisfied after I interactions. We present and
discuss some relevant challenges associated probabilistic model
checking and make some suggestions for future research.

Index Terms—stochastic analysis, probabilistic model checking,
verification, N-Queens

I. INTRODUCTION

Probabilistic model checking extends deterministic model
checking to modern domains in which a system’s actions are
taken only taken with a certain probability. Many real world
systems possess transition systems that are stochastic rather
than deterministic in nature. Unfortunately, when moving from
deterministic model checking to probabilistic model checking
there are further complications arising from increased com-
putational complexity. In order to examine these challenges,
along with the utility of probabilistic model checking, we
consider the N-Queens problem.

N-Queens in a generalization of a common mathematics
and computer science problem called Eight Queens. The
problem involves the positioning of N queens on an N by
N chess board. The goal of the problem is to transition the
queens into new positions until no queen can attack another.
Many stochastic algorithms exist to solve this problem. Each
algorithm can be broken down into a stochastic transition
system. A potentially interesting point of analysis for these
algorithms is determining the probability with which they
will find a solution within [transitions (iterations). This
analysis can be performed by developing a formal model of a
stochastic transition system and analyzing it in a probabilistic
model checker. PRISM is a probabilistic model checker that
is capable of performaing such an analysis.

In this work we present a probabilistic model checking
analysis of several stochastic algorithms capable of solving N-
Queens using PRISM. Similar work has been done in a PRISM
case study [1] based on the well known Dining Philosophers
problem. The problem involves N philosophers sitting around
a round table. There is a bowl of rice for each philosopher, and
N chopsticks shared among all the philosophers. A philosopher
requires both their right and left chopstick to eat. A hungry
philosopher may only eat if both their chopsticks are available,
otherwise the philosopher must put their chock sticks down
and begin meditating again. The goal of an algorithm is to
allow each hungry philosopher a chance to each. In the case
study a stochastic algorithm created by [2] is modeled and
analyzed. A resulting plot from the case study is shown in
Figure 1. The results provide the probability that the algorithm
will arrive a solution as a function of the number of transitions,
K, for varying numbers of philosophers, N.

We present a similar approach to modeling and analyzing
N Queens using PRISM. We discuss the challenges and
complexities associated probabilistic model checking, as well
as provide recommendations for future research.

II. MODELING FRAMEWORK

In this section we introduce some fundamental topics re-
quired to understand the different sections of this work.

1) N-Queens: N-Queens is a generalization of a common
computer science optimization problem called Eight Queens.
This problem involves N number of Queens on and N by N
chess board. The goal of the to find a solution configuration
in which no queen can attack (see Figure 4) another from
their current position. See Figure 3 for an illustration of
what a solution looks like for the variant of 8-Queens. There
are many deterministic and stochastic algorithms capable of
solving N-Queens under specific constraints. We focus on
a subset of stochastic algorithms. We model and analyze
these algorithms in a probabilistic model checker for the
probability that a solution is found based on the number of
transitions taken. To constrain the problem space and achieve
comparable results, we initialize the queens along the diagonal
configuration as illustrated by Figure 2. In addition, we only
consider algorithms that move a given queen along a row to a
new column space, and exclude algorithms that move a queen
along a column to a new row space.

Frobability

Probability a philosopher eats within K steps

— N=3
— N=4
— N=5
— N=6

o 2‘0 4‘0 GIU 8‘0 160 1é0 1510 160 1é0 20IU
1<

Fig. 1: PRISM Results for a Dining Philosophers Algorithm [1]

Fig. 4: Illustration of a Queen’s Attack Paths [3]

A. Algorithm: Random Column Move

Strictly speaking, this does not operate on a random column.
Rather, the algorithm selects a queen which is presently under
attack and moves the queen to a different column chosen at
random. [4] As such, the algorithm naturally terminates when
a solution is found, as no queens are under attack when a
solution is reached. Since this algorithm moves an attacked
queen to a random new column without considering whether
or not there is already a queen in that column, checking if a
solution is reached after a given transition requires checking
both columns and diagonals for possible attacks. Note that
checking rows is unnecessary, because all the queens start in
distinct rows and each queens row is never changed.

B. Algorithm: Random Column Swap

In a similar manner to the II-A algorithm, this algorithm also
only operates on an attacked queen. Unlike the II-A algorithm,
this one operates on two queens at once. Let Q)1 denote
the queen under attack and Q2 a different queen, selected
at random. Next, the two queens are swapped, by which we
mean that Q1 is moved to the column which Q2 occupies and
@2 moves to the column that Q1 occupied. Note that the rows
the queens occupy remain unchanged. Furthermore, (2, unlike
@1, may or may not be under attack. We do not check. [4]
Please note that since all queens start in different columns and
rows (see Figure 2), and the only operation which is performed
upon the queens is a column swap, at every point during the
algorithm all queens are in different rows and columns. As
such, checking if queens are attacking each other involves only
checking for diagonal attacks in this case.

C. Algorithm: Simulated Anneal Swap

This algorithm is somewhat more complex. In general, it
operates in the same way that the Random Column Swap does.
However, instead of accepting any swap it attempts to only
allow good swaps. Thus, if a swap would result in less queens
being attacked, it is always taken; however, if a swap results
in more queens being attacked, we take it with probability p.
This probability decreases as the number of successful swap
transitions taken (iterations) increases. [4] In our case, it starts
at 1, and decreases by 1/100 after each successful swap to a
min of 1/100.

1) Probabilistic Model Checking: Probabilistic model
checking is a form of model checking involving a stochastic
transition system. A stochastic transitions system in exten-
sion of deterministic transitions system in which, if guard
condition is satisfied, then one of several transitions is taken
based their respective probabilities. We use probabilistic model
checking to find the probability that a property is satisfied
after N number of stochastic transitions. In order to do this,
probabilistic model checkers provide a formal language in
which to formally specify a stochastic transition system. These
model checkers then build a transition graph utilizing discrete-
time Markov chains (see subsection II-C2) and calculate the
probability that a property is satisfied after a given number of
iterations.

2) Discrete-Time Markov Chains (DTMCs): DTMCs are
chains of probabilistic transitions that occur under the Markov
property. The Markov property is that, the probability that a
transition is taken, is only a product of the current state. [5]
See Figure 5 for an example DTMC. At a state, for example
So, there is a set of probabilities that each correspond to
the likelihood that a transition is taken. Then in the next
state, for example Si, there is a new set of probabilities
that each correspond to the likelihood that a transition is
taken from that state. DTMCs can be used to describe chains
of probabilistic transitions for a stochastic transition system.
Using this approach, we can run simulations to find the
likelihood that we have reach a solution state in our algorithms
given I number of transitions (iterations).

Fig. 5: Example Discrete-Time Markov Chain (DTMC) [6]

D. Computational Tree Logic (CTL)

Computational Tree Logic (CTL) is a subset of first-order
logic related to temporal operators that allow for the evaluation
of predicates over traces (or paths), and trace quantifiers. Each
element of a trace corresponds to a state at a specific time.
Common CTL operators are listed below. [7]

1) Temporal Operators:

a) F ¢: ¢ holds eventually (for a future element of a trace)
b) G ¢: ¢ holds globally (for for all elements of a trace)
¢) X ¢: ¢ holds next (for the next element of a trace)
d) ¢1 U ¢2: ¢1 holds at each element of the trace until
¢2 holds
2) Trace (or Path) Quantifiers:

a) A F ¢: ¢ holds in the future for all traces v
b) E F ¢: ¢ holds in the future for some traces A C v

E. Probabilistic Computational Tree Logic (PCTL)

Probabilistic computational tree logic (PCTL) is an exten-
sion of computational tree logic (CTL), providing the addition
of a probabilistic trace operator, P. This additional operator
provides the probably that a temporal operator formula will be
satisfied. This operator provides the necessary and sufficient
description needed to specify the probability that a solution

state is reached within a trace. Some common uses of the P
operator is listed below. [7]
1) P > Pipreshoid [F ¥]: The probability that ¢ holds in
the future traces is greater than Pjpreshoid-
2) P <= Pypreshota [F 1] The probability that ¢ holds in
the future traces is less than or equal to Pipreshold
3) P = Pipreshoid [F 1]: The probability that ¢ holds in
the future traces is equal to than Pjpreshold

1) PRISM: PRISM is a probabilistic model checker that
supports the use of DTMCs and PCTL in order perform
various types of probabilistic model checking. PRISM sup-
ports simulated runs through DTMCs which can verify PCTL
formulas, and experiments which can help find, Pipreqsholds
of PCTL formals; such as the probability that a solution is
found in the future. [8]

2) PRISM Experiments: PRISM supports experiments
which can find the probabilities for which the PCTL formulas
are satisfied over ranges of values. Using a counter as the
range of values, we can use PRISM to find the probability that
a system property is satisfied in a given number of transitions
(iterations). [8]

III. FORMAL MODELING
A. Meta-Scripts for PRISM Models Structure

We develop Python meta-scripts for generating PRISM’s
formal model files for each algorithm up to N number of
queens. This provides scalability that the PRISM models do
not have innately.

B. Formal Models

The model files for PRISM are written in primarily declar-
ative specifications in which the stochastic transition system
is declared, along with accompanying variables and formu-
las, then evaluated using the internal procedures of PRISM
simulations and experiments. See Figure 12 for an example
of the PRISM model window with the 4 queens random
column swap model loaded. As seen in Figure 12, there
are a handful of variables, follow by a module block that
encompasses the stochastic transition system specification.
Following the module block are two formula specifications
need for evaluation of the guard conditions and our property
specification (see subsection III-G). Last, we see three module
renaming lines. Essentially, these lines duplicate the transition
system for queen 1 to the relative transition system for queens
2, 3, and 4 so that they do not have to be specified directly.

C. Specifications

There are a few common specifications for each formal
PRISM model. First the queens positions in the PRISM models
are modeled as global variables with integers ranging from 1
to N for y (column) positions . The queens are initialized along
the diagonal of the chess board as shown in Figure 2. Note
that a single integer is sufficient to encode the position of
each queen, as their row numbers are static. We do, however,
include an appropriately named row constant for each queen,
to improve readability. Each PRISM model is accompanied

with a module that specifies the stochastic transitions for
queen 1, which is the queen occupying the top row. This
module is then pseudo-copied and renamed (there is a simple
technique within the PRISM language for this named module
renaming) so that each queen shares a similar stochastic
transition set. Finally, each model has a set of formulas that
provide reusable results for the stochastic transitions. See
III-B for more information on the formal models. In each
algorithm, a transition is only taken if the current queen is
under attack; therefore, every model shares the same formula
(structurally) for deciding whether a queen is attacked as
illustrated by equation 1. Because our initial configuration is
along a diagonal, we do not initially have any queens sharing
a row or column. In addition, we mostly consider algorithms
in which the transitions swap the queens; therefore, we only
need to check if the queens are attacked along a diagonal.
This is accomplishing by checking if there is an equivalent
distance between X and Y coordinates of any two queens.
The random column move algorithm is the only non-swap
based algorithm we used in this work. Because this algorithm
is non-swap based, queens can occupy the same columns and
an additional specification is required to determine a queen is
under attack on a column, as illustrated by equation 2. Note we
have slightly modified the included equations for readability
within this report.

Is_Queenl_Attacked?=
(((qlz — q2x)=(qly — q2y)V
(qlz — q27)=—(qly — q2y))V
((qlz — ¢3z)=(qly — q3y)V
(qlz — g37)=—(qly — q3y))V

LV
((qlz — gNz)=(qly — ¢Ny)V
(qlz — gNz)=—(qly — gNy)))

Is_Queenl_Attacked?=
(((qlz — q2x)=(qly — q2y)V
(qlz — q2x)=—(qly — q2y))V
((glz — g3z)=(qly — q3y)V
(qlz — q3x)=—(qly — q3y))V

cenV)
((glz — gNz)=(qly — gNy)V
(qlz — gNz)=—(qly — qNy))V
(qlz=q2z) V (qlz=q3x)V
LoV
(qlz=qNx))

D. Random Column Move Models

Because this model does not utilize swaps, we must also
consider the case when a queen is under attack by another
queen in the same column. Fortunately, 2 is sufficient for this
purpose. Armed with this slightly longer formula, we are able
to determine if a queen in this model is under attack, and
therefore able to take the appropriate move action.

Equation 3 shows one example stochastic transition in the
case of four queens. This transition states that if the queen is
under attack from a diagonal or column and the queen is in

ey

column 1, than we move this queen to another column. Each
column has a % chance of being selected. Note that since this
transition is column specific, queen 1 has a total of four such
transitions in this case, one for each column. Furthermore,
note that every single queen has their own version of these
transitions. When more than one guard condition is satisfied,
either transition may be taken.

It should be noted that "under_attack_diag’ is the name of a
formula. Formulas in PRISM function like include statements
in C; that is to say, PRISM copies and replaces the name of
the formula with it’s value.

(under_attack_diag|under_attack_column)&(qle = 1)— >
3 (qla’ =2) + 1 (qla’ = 3) + 3 : (qla’ = 4);
3)
E. Random Column Swap Models

The transition model here is quite simple. If a queen is under
attack, swap it with another queen at random. Repeat until no
transitions are enabled, meaning no queens are under attack.

Equation 4 show one stochastic transition in the case of four
queens. This transition states that if queen 1 is under attack,
we should swap it with another queen. Each other queen has
a % chance of being selected for the swap. This is the only
transition in queen 1’s module, but each queen has it’s own
module, so there are three other transitions like this one.

under_attack— > 1 : (qla’ = q2x)&(q22’ = qlx)
+1: (qla’ = ¢32)&(¢32" = qlx) 4)
+3 1 (qla’ = g4x)&(gdar’ = qlx);

oo

F. Simulated Annealing Swap Models

This model features several changes. First, we introduce
some state variables which are not related to the position of
queens on the board, but to the transitions we are taking. This
allows us to perform actual model transitions over several
steps, which makes the update logic substantially simpler,
though it does spread it across several transitions. The steps
include:

1) Swap selection. We begin by picking a queen which is
under attack, which will be called Q1. A random queen
@2 is also selected. Note that they cannot be the same
queen.

2) Current Attack Values stored. We then store the current
total number of queens attacked by Q1 and by ()2. Note
that a single queen may be under attack from multiple
sources.

3) Execution of the swap. 1 and Q)2 swap column posi-
tions.

4) Swap Evaluation. At this point, we compare the current
Attack Value of Q1 and Q2 to the previous Attack Values
we have stored. If the sum is smaller, this is our new state.
If it is larger, we might have to revert.

5) Possible revert. Just swaps the queens back to their origi-
nal positions.Furthermore, rather than simply checking if
a queen is under attack, we compute how many queens
are attacking this queen. This does not change the nature

of the formula, though it does require a slight tweak in
order increment by 1 for each attacking queen.

A sample transition is not included, as it is far more verbose
in this case, and the above enumeration is likely to provide
more clarity.

G. Property Specification

The primary property specification we utilize is provided by
equation 5. In natural language this specification reads, “with
what probability is it eventually the case that overall attack
equals false”, or more naturally “with what probability is a
solution eventually found.” Since experiments are run over a
value range, this probability returned by PRISM after each
transition (iteration) is the probability that a solution will be
found by that number of transitions (iterations). In equation
5, Overall_Attack refers to a formula which can determine
if any queen is under attack from a column or diagonal
(rows are not considered as we never have queens on the
same row). Unfortunately, we have not found a way to utilize
PRISM’s renaming functionality to avoid explicitly creating
this complete formula. An example of what this formula looks
like for 4 queens is included below. Here Overall_Attack refers
to a formula which can determine if any queen is under attack
from a column or diagonal (rows are not considered as we
never have queens on the same row). Unfortunately, we have
not found a way to utilize PRISM’s renaming functionality
to avoid explicitly creating this complete formula. Equation
6 provides an example of what this formula looks like for 4
queens.

P =?[F!Overall_Attack] 5)

formula overall_attack =
((qlz — q2z) = (qly — q2y)|(ql> — q27) = —(qly — q2y))|

(qlz = q2x)|

((¢lx — ¢3z) = (qly — q3y)|(¢lz — ¢3z) = —(qly — q3y))|
(qlz = ¢3z)|

((qlx — ¢4z) = (qly — ¢4y)|(¢lz — qdz) = —(qly — q4y))]
(qlz = q4x)|

((¢27 — ¢37) = (q2y — q3y)|(q22 — ¢3z) = —(q2y — q3y))|
(q2z = q3z)|

((¢27 — q4z) = (q2y — q4y)|(q2z — qdz) = —(q2y — q4y))|
(q2z = q4x)|

((g3z — q4z) = (q3y — q4y)|(g3x — qdx) = —(q3y — q4y))|
(q3z = q4x);

(6)
H. PRISM Model Files

The fully specified files used in this work have been may
available to the public on GitHub under an MIT license. See
appendix A for more information.

IV. TRIAL EXPERIMENTS

A. PRISM Experiments

Table I shows 6 trials chosen to be analyzed with PRISM
experiments. Q represents the number of queens (and conse-
quently the length and width of the board) and N represents the

TABLE I: trials

Trial | Stochastic Algorithm Q| N Step Size
1 Random Permutations 4 1 450 | 10

2 Random Column Swaps | 4 | 450 | 10

3 Simulated Annealing 4 50 5

4 Random Permutations 5 450 | 10

5 Random Column Swaps | 5 450 | 10

6 Simulated Annealing 5 50 5

number of transitions (iterations) that the experiment analyzes.
Trials 1 and 4 analyze the random column move algorithm up
to 450 transitions (iterations) for both the 4 queens case and
5 queens case, respectively, trials 2 and 5 analyze the random
column swap algorithm up to 450 transitions (iterations) for
both the 4 queens case and 5 queens case, respectively, and
trials 3 and 6 analyze the random column swap algorithm up
to 450 transitions (iterations) for both the 4 queens case and
5 queens case, respectively. The experiments consist of con-
structing the full set of DTMCs from the stochastic transition
systems and finding the probability from our specification (see
III-G) as a function of the number of transitions (iterations)
taken.

V. EXPERIMENT RESULTS

The results of the 6 experiments are provided in tables
II and III. Each table has 3 trials; one for each stochastic
algorithm. Tables II and III provide the number of iterations
required to reach a 99% probability that a solution has been
found for cases of 4 queens and 5 queens, respectively. Graphs
describing the probability that a solution has been found based
on the number of transitions (iterations) are provide for each
case in Figures 6, 7, 8, 9, 10, and 11.

A. 4 Queens

As seen in figure 6, for the case of 4 queens, the probability
that a solution is found for the random column move algorithm
follows a smooth hyperbola reaching approximately 99% after
400 iterations. Figure 7 shows that the probability that a solu-
tion is found for the random column swap algorithm follows
a smooth hyperbola reaching approximately 99% after 50
iterations. This is a significant improvement when compared to
the random column move algorithm. Figure 11 shows that the
probability that a solution is found for the simulated annealing
algorithm follows smooth hyperbola reaching approximately
99% after 45 iterations. This is a slight improvement over the
random column swap algorithm (and consequently a major
improvement of the random column move algorithm).

B. 5 Queens

Figure 9 shows that the probability that a solution is found
for the random column move algorithm follows a smooth
hyperbola reaching approximately 99% after 450 iterations.
The result is closer to a linear model than it was in the
4 queens case; however, it takes approximately 50 more
transitions to reach approximately 99% probability. Figure 10
shows that the probability that a solution is found for the
random column move algorithm follows a smooth hyperbola

TABLE II: Experiment Results: 4 Queens

Trial | Stochastic Algorithm 99% Probability Property Satisfied
1 Random Permutations 400

2 Random Column Swaps | 50

3 Simulated Annealing 45

TABLE II: Experiment Results: 5 Queens

Trial | Stochastic Algorithm 99% Probability Property Satisfied
4 Random Permutations 450

5 Random Column Swaps | 49

6 Simulated Annealing 45

reaching approximately 99% after 49 iterations. Again, this
is a significant improvement when compared to the random
column algorithm; however, it is very similar to the 4 queens
case in terms of the probability that a solution is found. Figure
11 shows that the probability that a solution is found for
the simulated annealing algorithm follows a smooth hyperbola
reaching approximately 99% after 45 iterations. This is a slight
improvement over the random column swap algorithm (and
again, a major improvement over the random column move
algorithm); however, there is relatively little change between
the 4 and 5 queens versions of the simulated annealing
algorithm.

C. Sanity Checks

A sanity Checks was performed by testing the property
shown in equation 7. In natural language the specification
states, the probability is .99 that no queens are under attack in
every element of a given trace. Since the queens are initially
under attack, this property should return false, and of course
did.

P = .99[G!Overall_Attack] (7
1.00 4
0.75
£
=
2 050
=}
o
0.25
0.00-
0 50 100 150 200 250 300 350 400 450

N

Fig. 6: Random Column Move with 4 Queens

VI. CHALLENGES
A. State-Space Explosion

There are multiple challenges when attempting to provide
probabilistic guarantees about a stochastic algorithms. First,
there is the classical problem of the state-space explosion. The

Prakability

0 50 100 150 200 250 300 350 400

N

Fig. 7: Column Swap with 4 Queens

1.00 4

Frobability
= =
n i
= wn

=
[
]

0.00 -

[&1]
—
=
—
[&)]
]
=]
[E]
[&}]
[7%)
=]
fad
[&}]
o
=]
o
o
©n
=]

Fig. 8: Simulated Annealing with 4 Queens

1.004

Prabalkility
=}
wn
=1

0 50 100 150 200 250 300 350 400 450

N

Fig. 9: Random Column Move with 5 Queens

list below describes the state-space explosion as the number
of queens, Q, is increased.
1) Random Column Permutation
a) 44 x T (4* x 450 = 115,200)
b) 5° x I (5% x 450 = 1,406,250)
c) 100 x I (100199 x 450 = 4.5 x 10202)
d) Q9 x1
2) Random Column Swap
a) 4* x I (4* x 450 = 115,200)
b) 5° x I (5% x 450 = 1,406,250)
¢) 10019 x I (10090 x 450 = 4.5 x 1020?)
d) Q9 x1

Probability
=]
S

0 50 100 150 200 250 300 350 400 450

Fig. 10: Column Swap with 5 Queens

1.00

Probability
o
]
=]
-

Fig. 11: Simulated Annealing with 5 Queens

3) Simulated Annealing
a) 100 x QV x I

Here the I represents the maximum number of iterations for
which the algorithm can run. This inclusion is unfortunate as
it yields a vastly increased number of states which PRISM
must consider, where in reality many of those states are
’identical’ in some sense. Unfortunately, we were unable to
find a method within PRISM which would allow us to compute
the probability of something within a certain number of steps
without introducing artificial deadlock states which cause these
I terms to be present.

The 100 is present in Simulated Annealing, as, unfortu-
nately, the probability is a state variable, and therefore further
increases the number of states PRISM must track. A possible
improvement on this would be to tie the probability to the
current transition number, which could possibly lead to some
reductions.

Note that the number of states is exponential with respect
to the number of Queens. Some of those states can never be
reached, but it is still the case that if we have @ queens, then
this means we have () state variables for those queens, each
with Q possible values, leading to Q€ possible combinations
between them.

B. Search/Solution Space Explosion

Unfortunately, PRISM has a hard time dealing with the
N-Queens problem, though this is for a fairly clear reason.

Consider the number of possible placements of N queens
on an N by N board. It is not difficult to see that it is
(N?)(N?—1)(N?-2)...(N?—(N —1)) which is equivalent to
(N21)/(N%— N) which is a very fast growth rate. Fortunately,
we do not actually consider every possible board.

Consider, first, the Perturbation algorithms. While queens
are allowed to be in the same columns, they are not allowed
to be in the same row. Therefore, the number of possible queen
placements during this algorithm is given by NV, as there are
N choices for each queen.

Next consider the Swap algorithms. In addition to the row
restriction, there are now column restrictions. Thus there are
N choices for the first queen, (N — 1) for the second, etc,
yielding N! possible placements in these algorithms.

Now note that each of these reductions is strictly beneficial
for us, as all solutions to the N-Queens problem require that all
queens be on different rows and columns, so the placements
we exclude with each algorithm are only of the sort which
could not be an actual solution. Unfortunately, N! is still a
very fast growth rate.

C. DTMCs Explosion

The biggest challenge we face with this stochastic analysis
is the explosion of the DTMCs graphs as the number of tran-
sitions increases. Since each stochastic transition, if enabled,
performs one of several actions based on a probability, the
number of possible transitions from time 0 grows rapidly as
as the number of transitions (iterations) increases. Consider the
transition system for the random column move algorithm with
N queens. There are N transitions, each with N — 1 possible
updates based on a ﬁ probability. For the first transition
there are N(N — 1) number of possible outcomes, for the
second transition there are (IN(N — 1))? possible outcomes,
and so on. Assuming I to be the number of transitions, there
are (N(N — 1)) possible outcomes after I transitions (not
including repeat states). Though the computational graph can
be reduced as repeat states occur using reduced-order binary
decision diagrams (ROBDDs), the scalability problem still
presents an issue.

D. PRISM Memory Limitations

All of the aforementioned challenges reveal the memory
limitations of PRISM. Higher number of queens (greater than
5) are not able to be evaluated due exponentially increased
time-to-completion and out-of-memory errors.

E. Future Work

It would be interesting to implement a greedy swap algo-
rithm that only takes a swap if it reduces the total number
of attacked queens on the board. It would also be interesting
to increase the memory limitations within the PRISM source
code so that it could handle larger N Queens problems. Last,
it would be beneficial to debug PRISMs reward functionality
which allows PRISM to perform state space reductions.

VII. CONCLUSION
A. Summary

We presented a probabilistic model checking approach using
PRISM to verify a PCTL property of three stochastic algo-
rithms used to solve N-Queens; random column swap, random
column move, and simulated annealing. The PCTL property
that we evaluated was the probability that it is eventually the
case that no queen is under attack (solution state). We ran
6 trial experiments in PRISM to evaluate this property and
return the probability that the respective algorithm will reach
a solution state as a function of the number of transitions
taken by the underlying stochastic transition systems. Trials 1
through 3 evaluated the 4-queens case, and trials 4 through 6
evaluated the 5-queens case. Trials 1 and 4 evaluated the ran-
dom column move algorithm and revealed an approximately
99% probability that a solution is found after 400 and 450
transitions, respectively. Trials 2 and 5 evaluated the random
column swap algorithm and revealed an approximately 99%
probability that a solution is found after 50 and 49 transitions,
respectively. Trials 3 and 6 evaluated the simulated annealing
algorithm and revealed an approximately 99% probability that
a solution is found after 45 transitions each. We concluded by
discussing the challenges associated with probabilistic model
checking; namely, the state-space, search/solution space, and
DTMCs explosion problems, and by provide suggestions for
future work.

APPENDIX
A. Software

The model files and Python meta-scripts for this work
have been made publicly available on GitHub under an MIT
license at the following location https://github.com/rpicard92/
prism-stochastic-n-queens-analysis.

B. PRISM Figures
REFERENCES

[1] “Randomised dining philosophers.” [Online]. Available: https://www.
prismmodelchecker.org/casestudies/phil.php

[2] D. Lehmann and M. O. Rabin, “On the advantages of free choice:
A symmetric and fully distributed solution to the dining philosophers
problem,” in Proceedings of the 8th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’81.
New York, NY, USA: ACM, 1981, pp. 133-138. [Online]. Available:
http://doi.acm.org/10.1145/567532.567547

[3] “Board editor.” [Online]. Available: https://lichess.org/

[4] Y. Baror, “Visualgos: N queens.” [Online]. Available: http://yuval.bar-or.
org/index.php?item=9

[5] D. Soni, “Introduction to markov chains.” [Online]. Available: https:
/Itowardsdatascience.com/introduction-to-markov-chains-50da3645a50d

[6] D. Parker, “Discrete-time markov chains.” [Online]. Available: http:
/fwww.prismmodelchecker.org/lectures/pmc/03-dtmcs.pdf

, “Probabilistic temporal logics.” [Online]. Available: http://www.
prismmodelchecker.org/lectures/pmc/04-prob\ %20logics.pdf

[8] “Prism.” [Online]. Available: http://www.prismmodelchecker.org/

(71

A PRISM 44

o Model exp_sim_anneal_¢ atnc
 Type:DTHC

const int 1i;
..a] dnit 1;

..4] dnit 2;

global qx :
const int 3y
global cax : [1..4] dnit 4;
const int qay

[1..4] init 3;

global vl : [0..2] imit L:
global v2 : [0..2] imit 1:
global v3 : [0..2] imit L:
global v4 : [0..2] imit L;

global success_swap_counter : [0..N] init O:
global actempred swap_counter @ [0..1] indt
global valid : [0..8] init 0;

global probebility ¢ [L..100] init 100;
const, int probability max = L00;

global cur_ack : [0..4] imit
global prev_ath i [0..4] imit 4;
global prev_athl i [0..4] dnit
global storl i [1..4] init 1;
global scor i [1..4] init 1;
module ql

[] (valid=0) & {total_atk > D) & (success_swap_cowntercl] -> 1/3: (prev_atk' = toval atk) & (vl' = 0) & {valid' = 1) & (v3'= 2) & (storl'=qlx) & (stor2'=q2x) + 1/3: (prev_ack' = total atk) ¢ (vl' = D) & {valid' = 1} & {v3'= 2) & (3]

[1 (valid=1} & (vl=2} & {attempted_svap_counter+l <) - (attempted_swap_counter'=attempted_swap_counter+l) & (prev_atkl'=total_atk) ¢ (valid'=2}:
[1 (vali
[1 (vali

&
& 2
& (v1=2) -> (cur_atk'=total_atk) & (valid'=5):

& ((prev_ath + prev_atl) >= (toral_atiscur_atk)) & (vl = 0)-> (vl'=l) & (valid'=6):
&

&

&

&

0

0

0 ((prev_atis + prev_atkl) < (total_ati+cur_atk)) & (vl = D) -> probability/prebability maw: (valid'=e) & (v1'=l) + (L-probability/probability max): (valid'=7):
0 (v1=Z) & (success_svap_counter+l < M) -> (valid'=D) & (v1'=1) & (SUCCESS_SWap_counter'=success_swap_counterl) & (probability'=mak(l, probability-13):

0 (v1=2) > (valid'=8) & (qlx’'=storZ) ¢ (v1'=l);

(v1=0) => (valid'=0) ¢ (qlx'=storl) & (vl'=1):

(ale-q3%) = ~(@ly=37))PL 00+ (((alemqde) = (qly-dy) | (qle-qdx) = -(qly-gdy))?1:0);
= (aly-gdy) | o(alx-qs) = - (aly-ady)) |o(als = qf) | ((QE-mK) = (q23-g37)

formila total atk = (((qlx-u2x) = (qly=g2y) | (gqle-q2x) = -(@ly-2y)) 2Le00 (((alx-a3e) = (qly-q3y)
formila overall _attack = ((qlx-q3%) = (qly-u3y) | (@le-qix) = -(qly=a3y)) | (alz = a2 | ((abeax) = (aly-u3y) | (gl = -(qly-a37)) | (alx = | ((alegd)

1] endnodule
1] endnodule
1] endnodule

Ly, vi=vz,
Ly, vi=v3,
Ly, vievd,

@2 = gl [alx=qc, 92x=qlx, Qly=2¥, O3
@3 = gl [alx=qdc, q3x=qlx, Qly=03¥, €3
G4 = gl [alx=qdc, qax=qlx, qly=gdy, oF

Fig. 12: PRISM GUI: Model Specification View

A pRISM 4.4

IP=" [F loverall_aftack] N=0:1:10

Fig. 13: PRISM GUI: Proper Specification and Experiment View

